THE SPREAD OF INFECTIOUS DISEASES
via Reusable Grocery Bags in a Grocery Supermarket
Do your inspections look like this?

For easier and more efficient inspections...

For more information and a free gift, see us at booth #201 in Anaheim at the NEHA 2018 AEC!

Call SWEEPS Today!

“Make Your Data Work As Hard As You Do!”

For More Information:
(800) 327-9337
info@SweepsSoftware.com

Software for Environmental and Consumer Health Agencies
ADVANCEMENT OF THE SCIENCE

The Spread of a Norovirus Surrogate via Reusable Grocery Bags in a Grocery Supermarket ... 8

Elevated Blood Lead Levels in Buncombe County Children: Implications of Lowering the North Carolina Intervention Level to the Centers for Disease Control and Prevention Blood Lead Reference Value ... 16

ADVANCEMENT OF THE PRACTICE

Building Capacity to Support the Use of Geospatial Modeling for Vectorborne Disease Control: West Nile Virus as a Case Study ... 24

Building Capacity: Building Capacity Gadget by Gadget .. 32

Direct From ATSDR: Measuring Community Vulnerability to Natural and Anthropogenic Hazards: The Centers for Disease Control and Prevention’s Social Vulnerability Index ... 34

Direct From CDC/EHS: Innovative Safe Water Program Improvement E-Learning for Environmental Health Professionals .. 38

ADVANCEMENT OF THE PRACTITIONER

Career Opportunities ... 42

EH Calendar... 44

Resource Corner... 46

YOUR ASSOCIATION

President’s Message: The State of Our Association ... 6

NEHA Organizational Members ... 48

Special Listing .. 50

NEHA 2018 AEC and HUD Healthy Homes Conference ... 52

NEHA News .. 54

DirecTalk: Musings From the 10th Floor: Doing the Right Thing in Anaheim ... 58

E-JOURNAL ARTICLE

International Perspectives: Environmental Health and Justice in a Chinese Environmental Model City ... E1
Showcase Environmental Health and All It Encompasses

For many years NEHA’s Journal of Environmental Health has been adorned by visually stunning and creative covers portraying a wide variety of environmental health topics. You can now own these amazing cover images in poster size. Use the walls of your department and office to display to visitors, your boss and staff, and the public what environmental health encompasses and your pride in your profession.

For more information and to place your order:
- Go to neha.org/publications/journal-environmental-health
- Contact us at jeh@neha.org

Official Publication
Journal of Environmental Health
(ISN 0022-0892)

- Kristen Ruby-Cisneros, Managing Editor
- Ellen Kuwana, MS, Copy Editor
- Hughes design|communications, Design/Production
- Cognition Studio, Cover Artwork
- Soni Fink, Advertising
- For advertising call 303.756.9090, ext. 314

Technical Editors
- William A. Adler, MPH, RS
 Retired (Minnesota Department of Health), Rochester, MN
- Gary Erbeck, MPH
 Retired (County of San Diego Department of Environmental Health), San Diego, CA
- Carolyn Hester Harvey, PhD, CIH, RS, DAAS, CHMM
 Eastern Kentucky University, Richmond, KY
- Thomas H. Hatfield, DrPH, REHS, DAAS
 California State University, Northridge, CA
- Dhitinut Ratnapradipa, PhD, MCHES
 Sam Houston State University, Huntsville, TX

Published monthly (except bimonthly in January/February and July/August) by the National Environmental Health Association, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926. Phone: (303) 756-9090; Fax: (303) 691-8496; Internet: www.neha.org. E-mail: info@neha.org. Volume 80, Number 10. Yearly subscription rates in U.S.: $150 (electronic), $160 (print), and $185 (electronic and print). Yearly international subscription rates: $150 (electronic), $250 (print), and $285 (electronic and print). Single copies: $15, if available. Reprint and advertising rates available at www.neha.org/JEH. CPM Sales Agreement Number 40046946.

Claims must be filed within 30 days domestic, 90 days foreign, © Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Opinions and conclusions expressed in articles, reviews, and other contributions are those of the authors only and do not reflect the policies or views of NEHA. NEHA and the Journal of Environmental Health are not liable or responsible for the accuracy of, or actions taken on the basis of, any information stated herein.

NEHA and the Journal of Environmental Health reserve the right to reject any advertising copy. Advertisers and their agencies will assume liability for the content of all advertisements printed and also assume responsibility for any claims arising therefrom against the publisher.

Full text of this journal is available from ProQuest Information and Learning, (800) 521-0600, ext. 3781; (734) 973-7007; or www.proquest.com. This journal is indexed by Wilson Applied Science & Technology Abstracts and EMBASE/Excerpta Medica.

All technical manuscripts submitted for publication are subject to peer review. Contact the managing editor for Instructions for Authors, or visit www.neha.org/JEH.

To submit a manuscript, visit http://jeh.msubmit.net. Direct all questions to Kristen Ruby-Cisneros, managing editor, kruby@neha.org.

Periodicals postage paid at Denver, Colorado, and additional mailing offices. POSTMASTER: Send address changes to Journal of Environmental Health, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926.

Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Published monthly (except bimonthly in January/February and July/August) by the National Environmental Health Association, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926. Phone: (303) 756-9090; Fax: (303) 691-8496; Internet: www.neha.org. E-mail: info@neha.org. Volume 80, Number 10. Yearly subscription rates in U.S.: $150 (electronic), $160 (print), and $185 (electronic and print). Single copies: $15, if available. Reprint and advertising rates available at www.neha.org/JEH. CPM Sales Agreement Number 40046946.

Claims must be filed within 30 days domestic, 90 days foreign, © Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Opinions and conclusions expressed in articles, reviews, and other contributions are those of the authors only and do not reflect the policies or views of NEHA. NEHA and the Journal of Environmental Health are not liable or responsible for the accuracy of, or actions taken on the basis of, any information stated herein.

NEHA and the Journal of Environmental Health reserve the right to reject any advertising copy. Advertisers and their agencies will assume liability for the content of all advertisements printed and also assume responsibility for any claims arising therefrom against the publisher.

Full text of this journal is available from ProQuest Information and Learning, (800) 521-0600, ext. 3781; (734) 973-7007; or www.proquest.com. This journal is indexed by Wilson Applied Science & Technology Abstracts and EMBASE/Excerpta Medica.

All technical manuscripts submitted for publication are subject to peer review. Contact the managing editor for Instructions for Authors, or visit www.neha.org/JEH.

To submit a manuscript, visit http://jeh.msubmit.net. Direct all questions to Kristen Ruby-Cisneros, managing editor, kruby@neha.org.

Periodicals postage paid at Denver, Colorado, and additional mailing offices. POSTMASTER: Send address changes to Journal of Environmental Health, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926.

Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Published monthly (except bimonthly in January/February and July/August) by the National Environmental Health Association, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926. Phone: (303) 756-9090; Fax: (303) 691-8496; Internet: www.neha.org. E-mail: info@neha.org. Volume 80, Number 10. Yearly subscription rates in U.S.: $150 (electronic), $160 (print), and $185 (electronic and print). Single copies: $15, if available. Reprint and advertising rates available at www.neha.org/JEH. CPM Sales Agreement Number 40046946.

Claims must be filed within 30 days domestic, 90 days foreign, © Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Opinions and conclusions expressed in articles, reviews, and other contributions are those of the authors only and do not reflect the policies or views of NEHA. NEHA and the Journal of Environmental Health are not liable or responsible for the accuracy of, or actions taken on the basis of, any information stated herein.

NEHA and the Journal of Environmental Health reserve the right to reject any advertising copy. Advertisers and their agencies will assume liability for the content of all advertisements printed and also assume responsibility for any claims arising therefrom against the publisher.

Full text of this journal is available from ProQuest Information and Learning, (800) 521-0600, ext. 3781; (734) 973-7007; or www.proquest.com. This journal is indexed by Wilson Applied Science & Technology Abstracts and EMBASE/Excerpta Medica.

All technical manuscripts submitted for publication are subject to peer review. Contact the managing editor for Instructions for Authors, or visit www.neha.org/JEH.

To submit a manuscript, visit http://jeh.msubmit.net. Direct all questions to Kristen Ruby-Cisneros, managing editor, kruby@neha.org.

Periodicals postage paid at Denver, Colorado, and additional mailing offices. POSTMASTER: Send address changes to Journal of Environmental Health, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926.

Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Published monthly (except bimonthly in January/February and July/August) by the National Environmental Health Association, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926. Phone: (303) 756-9090; Fax: (303) 691-8496; Internet: www.neha.org. E-mail: info@neha.org. Volume 80, Number 10. Yearly subscription rates in U.S.: $150 (electronic), $160 (print), and $185 (electronic and print). Single copies: $15, if available. Reprint and advertising rates available at www.neha.org/JEH. CPM Sales Agreement Number 40046946.

Claims must be filed within 30 days domestic, 90 days foreign, © Copyright 2018, National Environmental Health Association (no refunds). All rights reserved. Contents may be reproduced only with permission of the managing editor.

Opinions and conclusions expressed in articles, reviews, and other contributions are those of the authors only and do not reflect the policies or views of NEHA. NEHA and the Journal of Environmental Health are not liable or responsible for the accuracy of, or actions taken on the basis of, any information stated herein.

NEHA and the Journal of Environmental Health reserve the right to reject any advertising copy. Advertisers and their agencies will assume liability for the content of all advertisements printed and also assume responsibility for any claims arising therefrom against the publisher.

Full text of this journal is available from ProQuest Information and Learning, (800) 521-0600, ext. 3781; (734) 973-7007; or www.proquest.com. This journal is indexed by Wilson Applied Science & Technology Abstracts and EMBASE/Excerpta Medica.

All technical manuscripts submitted for publication are subject to peer review. Contact the managing editor for Instructions for Authors, or visit www.neha.org/JEH.

To submit a manuscript, visit http://jeh.msubmit.net. Direct all questions to Kristen Ruby-Cisneros, managing editor, kruby@neha.org.

Periodicals postage paid at Denver, Colorado, and additional mailing offices. POSTMASTER: Send address changes to Journal of Environmental Health, 720 S. Colorado Blvd., Suite 1000-N, Denver, CO 80246-1926.
Compliance.
Ozark River is the Standard

NSF® CERTIFICATION
NSF® Certification is a key factor separating Ozark River Portable Sinks® from its competitors. NSF® is the most recognized sanitation standard in many industries. Certification is critical to help ensure Ozark River Portable Sinks® complies with most state and local handwashing codes.

ENERGY AND WATER SAVINGS
Our reliable, instant hot water system uses a minimal amount of energy to heat the water. No preheating of water is required. Sinks also dispense a sensible 1/2 gallon of water per minute (GPM), providing a perfect, economical stream of water for handwashing while conserving precious water resources.

Portable, Hot Water Hand Washing Stations
- **HOT WATER SYSTEM ON-DEMAND**
 Instant, economical Hot Water System heats only when needed.
- **5 GALLON FRESH WATER TANK**
 FDA certified. No cross contamination.
- **6 GALLON WASTE WATER TANK**
 FDA certified. 17% overflow capacity.
- **FRONT SAFETY LOCKING CASTERS**
 NSF certified casters with front safety brakes.
- **QUICK CONNECT**
 NSF certified Fresh Water Tank connection.
- **ADA COMPLIANT WRIST HANDLES**
- **TOP-FILL LIQUID SOAP DISPENSER**
- **M-FOLD TOWEL DISPENSER**
It truly is amazing how fast a year passes. As I near the conclusion of my year in the presidential chair, I can’t help but reflect upon the state of our association. The fact that you are reading this column suggests that you also care a great deal about environmental health. All of us who get involved with leadership at the National Environmental Health Association (NEHA) or within the state affiliates care deeply about this profession and we want to see our organizations rise to meet the challenges of a new day. We give our time as volunteers in pursuit of self-actualization and the satisfaction that comes with knowing that our blood, sweat, and tears actually contribute to a better world. With this in mind, I must report to you that your association is stronger than it has ever been, but not nearly as strong as it needs to be.

The organizational health of NEHA is demonstrated in many ways. The association has received clean financial audits for multiple years and has finished the past couple of years in the black after suffering significant losses during prior years. NEHA remains competitive for federally funded grant projects and cooperative agreements, which helps to ensure that we are able to be a difference-making organization. The most recent Annual Educational Conference (AEC) & Exhibitions in Grand Rapids and San Antonio were well attended with high member satisfaction scores. We have also secured outstanding locations for the upcoming AECs: Anaheim in 2018, Nashville in 2019, and New York City in 2020. Membership has grown to an all-time high of nearly 5,000 professionals. I hope you have also noticed that the NEHA website and membership/learning platforms have been improved. Perhaps most important, we have beefed up our ability to influence environmental health policy. Staff located in Washington, DC, meet with elected officials and federal departments and advocate for better environmental health policy and for the environmental health workforce.

I have been honored to attend many meetings across the U.S. and to represent NEHA at the World Congress on Environmental Health earlier this year in New Zealand. It has been a pleasure to discuss the state of environmental health with my counterparts from dozens of places. I am always amazed at how similar environmental health professionals are, regardless of state or national origin. It is also clear to me that NEHA is generally held in high esteem by our state affiliates and international neighbors. And yet, we can do better. We need to make sure the connective tissue and resource sharing between our like-minded organizations are strengthened. There are great opportunities for our organizations to speak up in unison for a healthier world. NEHA is on the cusp of approving several new and revised position papers. I encourage you to become familiar with, and use, the wealth of information that is contained in the position papers that can be found on NEHA’s website (www.neha.org/publications/position-papers).

Despite these positive developments—and I could go on with a number of others—I believe that NEHA is not nearly strong enough as it needs to be. NEHA should be at the forefront in the minds of policy makers as they consider issues pertinent to human health and the environment. We are not there yet. While we have a record number of members, we should probably have twice as many, and those members need to be more engaged. The NEHA Endowment and Scholarship Funds can become dynamic forces for advancing environmental health projects and education if they are adequately funded and purposed. We are making progress, but we will not achieve our goals unless everyone pulls a little harder and recruits another colleague to the cause.

One of my earlier columns discussed the threats to funding of the Great Lakes Restoration Initiative (GLRI). I encouraged all of you to contact your representatives in Washington, DC, and stand up for this important issue. I am happy to report that the final spending bill included full funding of GLRI that is equivalent to prior years. Thank you for your actions—you contributed to a team victory.
Continue to be involved and do not underestimate the power that you have to change the course of history. Elected officials in Washington, DC, and in state capitols across the nation truly do listen to the concerns of their constituents. Place their office telephone numbers and e-mail addresses in your contact list. Phone calls and e-mails give them pause to consider the ramifications of their policy decisions.

Over the past couple of years NEHA has developed muscle in this arena. In addition to our Washington, DC, staff, we also held our Second Annual Lobby Day in Washington, DC, on May 1, 2018. During this day of political advocacy, your NEHA board of directors and staff visited the offices of numerous elected officials to educate them about the importance of environmental health and the environmental health workforce. I have been encouraged by these conversations because I think many eyes are being opened to the fact that environmental health is a core component of national safety and security.

As this presidency comes to an end for me, I hope I can count on you to help NEHA reach its potential. This association and all its state affiliates need new leaders and volunteers. Please get involved for the sake of environmental health and for your own personal benefit. My time on the NEHA board of directors has required many hours of my volunteer time, but to be totally honest, it has been a fantastically fun ride. I hope to see you in Anaheim for the NEHA 2018 AEC & Exhibition and U.S. Department of Housing and Urban Development Healthy Homes Conference, June 25–28, and I hope to hear your aspirations for taking NEHA to new heights.

American Academy of Sanitarians
Lawrenceville, GA
James J. Balsamo, Jr., MS, MPH, MHA, RS, CP-FS
Metairie, LA
LeGrande G. Beatson
Farmville, VA
George A. Morris, RS
Dousman, WI

Priscilla Oliver, PhD
Atlanta, GA
Vince Radke, MPH, RS, CP-FS, DAAS, CPH
Atlanta, GA
Richard L. Roberts
Grover Beach, CA
Leon Vinci, DHA, RS
Roanoke, VA

To donate, visit www.neha.org/about-neha/donate/nehaaas-scholarship-program.

The NEHA Endowment Foundation was established to enable NEHA to do more for the environmental health profession than its annual budget might allow. Special projects and programs supported by the foundation will be carried out for the sole purpose of advancing the profession and its practitioners. Individuals who have contributed to the foundation are listed below by club category. These listings are based on what people have actually donated to the foundation—not what they have pledged. Names will be published under the appropriate category for one year; additional contributions will move individuals to a different category in the following year(s). For each of the categories, there are a number of ways NEHA recognizes and thanks contributors to the foundation. If you are interested in contributing to the Endowment Foundation, please call NEHA at 303.756.9090. You can also donate online at www.neha.org/about-neha/donate.

DELEGATE CLUB ($25–$99)
Name in the Journal for one year and endowment pin.
Freda W. Bredy
Alexandria, VA
Priscilla Oliver, PhD
Atlanta, GA

HONORARY MEMBERS CLUB ($100–$499)
Letter from the NEHA president, name in the Journal for one year, and endowment pin.
Iowa Public Health Association
Des Moines, IA
 Lynne Madison, RS
Hancock, MI
Ned Therien, MPH
Olympia, WA

21st CENTURY CLUB ($500–$999)
Name submitted in drawing for a free one-year NEHA membership, name in the Journal for one year, and endowment pin.

SUSTAINING MEMBERS CLUB ($1,000–$2,499)
Name submitted in drawing for a free two-year NEHA membership, name in the Journal for one year, and endowment pin.
James J. Balsamo, Jr., MS, MPH, MHA, RS, CP-FS
Metairie, LA

EXECUTIVE CLUB AND ABOVE ($5,000–$100,000)
Special invitation to the AEC President’s Reception, name in the Journal for one year, and endowment pin.
Vince Radke, MPH, RS, CP-FS, DAAS, CPH
Atlanta, GA

AFFILIATES CLUB ($2,500–$4,999)
Name submitted in drawing for a free AEC registration, name in the Journal for one year, and endowment pin.

Thank you.
Introduction
Norovirus is a pathogenic RNA virus that is the leading cause of acute gastroenteritis from contaminated food in the U.S. Outbreaks occur in restaurants, schools, hotels, home care facilities, cruise ships, and in the wilderness tourism industry. Norovirus outbreaks occur often during times of low humidity such as the winter season in temperate zones (Colas de la Noue et al., 2014; Jones, Gaither, Kramer, & Gerba, 2009; Seitz et al., 2011). These viruses are a major concern for surfaces and fomites in the food production, service, and grocery retail industries (U.S. Department of Health and Human Services, 2018).

The objective of this study was to test a hypothesized norovirus transmission pathway via reusable grocery bags (RGBs) within a conventional grocery supermarket. A true norovirus transmission pathway is not possible to evaluate in a public setting, so a bacteriophage is used as a safe surrogate to assess the presence and concentration of the virus. A surrogate is defined here as an organism, particle, or substance that is used to study the fate and transport of a pathogen in a specific environment (Sinclair et al., 2012).

The MS2 bacteriophage is a suitable surrogate for norovirus because it is a single-stranded RNA virus with a similar structure and size to most noroviruses (Beamer et al., 2014). The MS2 bacteriophage surrogate can be used to model the survival, morphology, and transport characteristics of norovirus without the infection risk or the necessity of mammalian cell culture facilities (Dawson, Paish, Staffell, Seymour, & Appleton, 2005). This experiment models norovirus transmission with the surrogate MS2 introduced into a grocery store through an experimentally contaminated RGB.

This study builds on a previous work that investigated the potential for contamination in RGBs. The findings were that over 10% of all bags obtained from shoppers contained fecal indicator bacteria and that only 3% of all shoppers had reported ever washing their bags (Williams, Gerba, Maxwell, & Sinclair, 2011). Other studies have linked reusable bags with a norovirus outbreak in the U.S. Northwest (Repp & Keene, 2012) where an RGB was contaminated with aerosolized norovirus from an infected individual. This study investigates the potential for contaminated RGBs to distribute viruses within a public grocery store.

This study’s hypothesis is that norovirus could be spread from a contaminated RGB to various public surfaces in the grocery store (Figure 1). The study purpose is to provide data that can help identify critical control...
points that could be the focus of improved norovirus management strategies in grocery stores.

Methods

Our hypothesized virus transmission pathway was developed in this field study using RGBs and a nonpathogenic microbial surrogate for norovirus. Volunteer shoppers were recruited in front of three grocery stores in California and instructed to complete their planned shopping trip using an RGB that the study team provided. The volunteer shopped using a store-provided grocery cart and was followed by a study team member who swabbed surfaces and items contacted by the volunteer shopper. The three site visit trips involved traveling to Atascadero, Ceres, and Madera in the Central Valley of California. The temperature and humidity were recorded after the study using historical data from the closest National Climatic Data Center (NCDC)-affiliated weather stations to each grocery store site (NCDC, 2012).

A microbial surrogate was used to safely trace the norovirus transmission pathway in the presence of customers. The norovirus surrogate chosen was the MS2 single-stranded RNA bacteriophage obtained from American Type Culture Collection (ATCC #15597-B1). The MS2 surrogate was used because it can be produced in large numbers at low cost, can be easily detected, and is nonpathogenic (Sinclair et al., 2012). Also, MS2 is a safe, noninfectious laboratory strain not found in the natural environment or on fomites. For this reason, it was not necessary to decontaminate the bags and surfaces in the store before the study initiation.

Grocery stores were selected by contacting the California Grocers Association and the Environmental Safety Alliance. These two stakeholders were able to obtain access permissions and staff participation from three stores owned by PAQ, Inc. The three supermarkets were a Food4Less store in Atascadero, California, measuring 3,530 m²; a Food4Less store in Ceres, California, measuring 2,880 m²; and the Rancho San Miguel Market in Madera, California, measuring 5,561 m². The store area estimates were calculated using the polygon tool in Google Earth version 7.0.3.8542 (2013).

All three stores were of a similar layout with an identical checkout stand, allowing the customer to self-bag the groceries. The Rancho San Miguel Market is a larger store that closely resembles a Food4Less with added Latino food.

TABLE 1

<table>
<thead>
<tr>
<th>Item Identification Letters</th>
<th>LC</th>
<th>Cat</th>
<th>μ</th>
<th>GM</th>
<th>SD</th>
<th>n</th>
<th>%I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeded reusable grocery bag</td>
<td>a</td>
<td>9</td>
<td>4.81×10^9</td>
<td>8.58×10^9</td>
<td>7.27×10^9</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Hands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer</td>
<td>b</td>
<td>7</td>
<td>7.02×10^7</td>
<td>4.10×10^7</td>
<td>7.52×10^7</td>
<td>9</td>
<td>1.4600</td>
</tr>
<tr>
<td>Clerk</td>
<td>c</td>
<td>7</td>
<td>9.30×10^7</td>
<td>9.30×10^7</td>
<td>9.30×10^7</td>
<td>4</td>
<td>1.9300</td>
</tr>
<tr>
<td>Cart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handle</td>
<td>d</td>
<td>5</td>
<td>3.46×10^7</td>
<td>2.91×10^7</td>
<td>1.59×10^7</td>
<td>9</td>
<td>0.0072</td>
</tr>
<tr>
<td>Surface</td>
<td>e</td>
<td>5</td>
<td>6.47×10^7</td>
<td>2.38×10^7</td>
<td>8.13×10^7</td>
<td>6</td>
<td>0.0130</td>
</tr>
<tr>
<td>Checkout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td>f</td>
<td>5</td>
<td>1.43×10^6</td>
<td>9.05×10^4</td>
<td>1.52×10^6</td>
<td>4</td>
<td>0.0030</td>
</tr>
<tr>
<td>Conveyor</td>
<td>g</td>
<td>4</td>
<td>6.95×10^4</td>
<td>2.60×10^4</td>
<td>5.73×10^4</td>
<td>13</td>
<td>0.014</td>
</tr>
<tr>
<td>Customer bumper</td>
<td>h</td>
<td>4</td>
<td>6.07×10^4</td>
<td>1.23×10^4</td>
<td>7.97×10^4</td>
<td>6</td>
<td>0.013</td>
</tr>
<tr>
<td>Clerk keyboard</td>
<td>i</td>
<td>4</td>
<td>5.58×10^4</td>
<td>2.54×10^4</td>
<td>4.51×10^4</td>
<td>4</td>
<td>0.012</td>
</tr>
<tr>
<td>Clerk table</td>
<td>j</td>
<td>4</td>
<td>5.25×10^4</td>
<td>1.56×10^4</td>
<td>5.00×10^4</td>
<td>4</td>
<td>0.011</td>
</tr>
<tr>
<td>Customer keyboard and table</td>
<td>k</td>
<td>5</td>
<td>1.54×10^6</td>
<td>1.50×10^6</td>
<td>3.71×10^4</td>
<td>4</td>
<td>0.0032</td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaged</td>
<td>l</td>
<td>7</td>
<td>2.90×10^7</td>
<td>3.75×10^6</td>
<td>5.91×10^7</td>
<td>11</td>
<td>0.6020</td>
</tr>
<tr>
<td>Unpackaged produce</td>
<td>m</td>
<td>6</td>
<td>2.36×10^6</td>
<td>3.04×10^5</td>
<td>4.22×10^6</td>
<td>9</td>
<td>0.0490</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freezer handle</td>
<td>n</td>
<td>4</td>
<td>2.45×10^4</td>
<td>1.94×10^4</td>
<td>1.17×10^4</td>
<td>6</td>
<td>0.0005</td>
</tr>
<tr>
<td>Other handle</td>
<td>o</td>
<td>4</td>
<td>2.42×10^4</td>
<td>1.39×10^4</td>
<td>2.86×10^4</td>
<td>5</td>
<td>0.0005</td>
</tr>
<tr>
<td>Incentive card</td>
<td>p</td>
<td>5</td>
<td>3.91×10^5</td>
<td>3.34×10^5</td>
<td>1.90×10^5</td>
<td>6</td>
<td>0.0081</td>
</tr>
</tbody>
</table>

Note: Darker shades of grey indicate a higher LC. The identification letters are used in reference to Figure 3.
The majority Latino population in Madera (76.7%) and Ceres (56.0%) represent young Latino families, with the Atascadero market catering towards a White community (76.7%) (U.S. Census Bureau, 2010). The Atascadero location is a cooler coastal climate, while the other two stores are in the Central Valley of California.

The new RGBs used in the study were purchased for 98 cents each from the three stores on the date of the study. The bag material was unwoven polypropylene, a common cloth-like synthetic typically used for inexpensive RGBs. The same bag was available at each of the three stores and was sized at 36 x 34 x 18 cm and printed with a logo of Food4Less or Rancho San Miguel markets.

The bag and its handles were thoroughly sprayed with 5 mL of a 10⁹ PFU/mL-concentration MS2 solution suspended in sterile Ringer’s solution (Fisher Scientific). The spray bottle was a sterile 250 mL low-density polyethylene plunger-style bottle (Bel-Art, Fisher Scientific) that was prepped with a fresh MS2 surrogate stock for each of the study days. The MS2 bacteriophage #15597 was obtained from ATCC and propagated using the U.S. Environmental Protection Agency single-agar layer method (Ohio Environmental Protection Agency [EPA], 2005). A lawn of the host E. coli strain (ATCC #15597) allowed heavy plaque formation on trypticase soy agar (Difco) after 24 hr of incubation at 37 °C. The plaques were scraped from the surface of the agar and placed in 50 mL sterile centrifuge tubes along with 30 mL of sterile Ringer’s solution buffer.

The MS2 surrogate concentration used in this study is a similar high concentration to norovirus that can be shed by an infected individual’s vomit or feces (Sinclair, Jones, & Gerba, 2009). The RGBs were hung to dry in ambient outdoor air for 15 min, then folded and placed in individual, sealed Ziplock bags.

Volunteer shoppers were recruited from the entryway of the store after verbal consent, a brief introduction to the study purpose, and instructions. The shoppers agreed to shop for their normal items and to shop for the included list of items needed for the study. The volunteers were provided a list of items designed to control the travel and contact that the customers had throughout the store. Shoppers were motivated to follow through with the study by being informed that they would receive an incentive at the end of the study.

The incentive was not disclosed upon recruitment; however, at the end of the study volunteers were given $10–$15 store credit on a gift card. The volunteers were then given the RGB to use when they checked out at the designated checkout stand after the completion of their shopping errand. Volunteers were given the RGB and intentionally not told what to do with the bag as they carried or carted it throughout the store. The study team ensured that the volunteer shoppers did not use a grocery cart used by a previous study participant. The Loma Linda University Institutional Review Board granted this study a waiver, because there were no health risks, no individual identifiers, and no health data were recorded.

As the volunteer shopper moved throughout the store, a study team member swabbed the area touched by the volunteer shopper and then labeled the tube with the surface area of that particular surface. The rayon-tipped swabs (Fisher Scientific) were stored in 5 mL of Ringer’s solution (Fisher Scientific) as a transport buffer, placed in an ice cooler, and transported back to the Loma Linda Environmental Microbiology Research Laboratory.

The study team also swabbed all surfaces at the checkout area, the grocery cart, the RGB, the fingers of the shoppers, and the fingers of the checkout counter clerk. The study also collected a series of negative controls such as the fingers of the volunteer–customers before they entered the store, several surfaces before study initiation, and a noncontacted shopping cart. The samples were processed using the U.S. EPA single-agar layer method (Ohio EPA, 2005) with antibiotics to remove background bacteria. The E. coli strain (ATCC #15597) was used to host the MS2 plaque formation. The plates were incubated at 37 °C for 24 hr and then counted for plaques.
Results
This study presents concentrations of the MS2 bacteriophage on varying grocery store surfaces (Table 1). The data are presented with standard measures of central tendency such as the geometric means (GM) to show differences in magnitude, the percentage of the initial inoculum (%I), the number of surfaces sampled (n), and the standard deviation (SD). Table 1 also presents the log concentration of the MS2 bacteriophage (LC) and a category for the hypothesized exposure route. Data are summarized for each surface and category per the hypothesized model presented in Figure 1. The far-left box is the initial contaminated RGB, while the far-right box indicates hand-to-face exposure that signifies the end of the exposure route and potential infection. Surfaces are categorized by the order of contact with a contaminated RGB. The category 1 (C1) surfaces include items that come in direct contact with the RGB and then a shopper’s hand. The category 2 (C2) surfaces come in contact with a C1 surface or hand before becoming contaminated. An example of C2 is the clerk’s keyboard at the checkout counter, which would not become contaminated until the clerk first touched the contaminated RGB or contaminated food item.

For simplicity, only two contact categories are presented here, as there are hundreds of possible routes of exposure. Some surfaces in Figure 1 were included for continuity (e.g., facial membranes and other RGBs) and not measured during the experiment. The C1 surfaces with direct contact to the volunteer shopper’s hand or RGB had higher overall concentrations of MS2 than the C2 surfaces. The hypothesized virus transmission model was largely validated and the only exception was the high concentration on the checkout clerk’s hands (Figures 1 and 2).

The highest concentration of 10⁹ PFU/cm² was the RGB seeded in this study. The source customer hands had the second highest concentration at 9.3 x 10⁷ PFU/cm² (or 1.93% of initial inoculum), with the packaged food as the third most contaminated (Figure 2). The initial concentration of 10⁹ PFU/100 cm² is shown in Table 1 with the log concentration of other items in lighter shades of grey. Due to the high concentration in the initial RGB, the lightest shade of grey still represents a relatively high concentration of virus at 10⁴ PFU/100 cm². The initial concentration of 10⁹ PFU/100 cm² represents environmental concentrations of infectious norovirus particles that have been reported as higher than 10⁹ genome copies/g feces (Lee et al., 2007).

The packaged food was sampled on the handle portion of the plastic bag and had a higher concentration of MS2 than unpackaged food. This finding was not statistically
significant ($t = 0.35, p = .72, df = 17$) but might indicate a higher percent transferability to the plastic from hands and a higher percent recovery from plastic material to the sample swabs. Most packaged food sampled in this study was in typical grocery store packaging: polypropylene fibrous sacks for produce, clear bags made from polypropylene resins or polyethylene terephthalate (PET) for breads and potatoes. All other C2 handles in the three stores were found to have a lower concentration of the bacteriophage surrogate.

The data in Table 1 are presented for all three grocery stores because they were found to be statistically similar; analysis of variation (ANOVA) showed no significant difference in the mean concentrations of MS2 on the seeded RGB across three different stores ($df = 2, F = 2.50, p = .151$). The samples were collected in the late afternoon to early evening in the three stores to characterize the time with the most customer traffic. The relative humidity (RH) and temperature were typical for the temperate climate zone during the winter visits on December 15, 2012, and February 8, 2016. The RH and temperatures were 64% and 10.6 °C for Ceres, California; 51% and 22.2 °C for Madera, California; and, 74% and 7.8 °C for Atascadero, California (NCDC, 2012).

Discussion

The lowest mean concentration of virus detected on a surface was 10^4 PFU/cm². This concentration would represent a virus transmission risk for most individuals encountering any of the surfaces touched by the RGB directly or indirectly through at least one other contact. All C1 and C2 surfaces in the grocery store had detectable MS2, while all control surfaces were appropriately negative or positive. Further study is needed to characterize additional surfaces that were not contacted by the volunteer shoppers.

The high recovery of MS2 from packaged foods could be attributed to the increased adhesion of enteric viruses to hydrophobic PET plastic surfaces (Butot et al., 2007) or similar mechanisms for biofilm adherence within the high density polyethylene (HDPE) pipes (Różek, Cydzik-Kwiatkowska, Kowalska, & Kowalski, 2015). The surfaces sampled in this study include the polypropylene (PP) fibrous sacks for potatoes and oranges, the clear bags made from PP resins used for table grape bags, unwoven PP sacks used in this study for RGBs, and HDPE bags used for self-bagging unpackaged vegetables. Some of these adhesion mechanisms include the material’s electrostatic surface charge, the material's hydrophobicity, the influences of temperature and humidity on the material, and other physiochemical parameters within the virus (Langlet, Gaboriaud, Gantzer, & Canales, 2009).

Discussion

The lowest mean concentration of virus detected on a surface was 10^4 PFU/cm². This concentration would represent a virus transmission risk for most individuals encountering any of the surfaces touched by the RGB directly or indirectly through at least one other contact. All C1 and C2 surfaces in the grocery store had detectable MS2, while all control surfaces were appropriately negative or positive. Further study is needed to characterize additional surfaces that were not contacted by the volunteer shoppers.

The high recovery of MS2 from packaged foods could be attributed to the increased adhesion of enteric viruses to hydrophobic PET plastic surfaces (Butot et al., 2007) or similar mechanisms for biofilm adherence within the high density polyethylene (HDPE) pipes (Różek, Cydzik-Kwiatkowska, Kowalska, & Kowalski, 2015). The surfaces sampled in this study include the polypropylene (PP) fibrous sacks for potatoes and oranges, the clear bags made from PP resins used for table grape bags, unwoven PP sacks used in this study for RGBs, and HDPE bags used for self-bagging unpackaged vegetables. Some of these adhesion mechanisms include the material’s electrostatic surface charge, the material’s hydrophobicity, the influences of temperature and humidity on the material, and other physiochemical parameters within the virus (Langlet, Gaboriaud, Gantzer, & Canales, 2009).

Our study findings are consistent with others who have found that hand washing can be the most important step for customers to reduce their risk of norovirus infection (Hall et al., 2011). The grocery store presents a public area where many individuals mix and touch many common surfaces. A contaminated grocery cart, basket, or RGB could present the virus transmission pathway hypothesized in this study.

This study develops exposure assessment data that can be used for a quantitative microbial risk assessment (QMRA). More work is necessary to use the QMRA framework on our current dataset to characterize the uncertainty and describe the risk of virus infection from nondietary contact in a grocery store (Figure 1). A similar study used the QMRA framework to determine that the concentration of virus on fomites is the parameter most strongly linked to the estimated dose of the virus to cause a nondietary infection (Julian, Canales, Leckie, & Boehm, 2009).

Conclusion

This study presents various surfaces in the grocery store as potentially contaminated after contact with an RGB containing a surrogate for norovirus. An additional microbial risk assessment should take the data presented in this study and evaluate each surface from a hazard analysis and critical control point (HACCP) perspective. Each of the volunteer shoppers contacted a small percent—
age of available surfaces in each store with one area in common: The checkout stand is touched by every customer. The checkout stand surfaces and the grocery cart present ideal targets for new industry cleaning standards or new materials (Figure 3). This opportunity is also a consideration for small and large grocery stores alike during times of low customer volume because all customers filter through only one checkout stand.

The grocery cart is another surface to target in a HACCP plan, as the virus concentrations were also high. Grocery carts are not contacted as frequently as the checkout stand, and in many climates, are often in the parking lot where they are unintentionally disinfected from exposure to high temperatures, UVA, and UVC from sunlight. Despite this potential natural process, one study found high concentrations of fecal indicator bacteria on grocery carts collected from stores in Southern California and other metropolitan areas around the U.S. (Gerba & Maxwell, 2012).

This study suggests that a virus-contaminated RGB presents a public health risk if it is brought into a contemporary grocery supermarket. The RGBs are contacted by people, contact many surfaces, and are used to carry a variety of household items in addition to groceries. The bags traverse the hygienic boundaries between private homes and public spaces such as grocery carts and checkout stands.

As the highest concentration of MS2 was found on hands (Figure 3), the health risk first should be mitigated through promotion of an in-store hand hygiene campaign. The additional surface contamination findings of this report justify additional measures including more frequent surface disinfection with an emphasis on checkout stand surfaces, antimicrobial RGBs, and the use of antimicrobial surfaces to be built into checkout stands.

Acknowledgement: The authors would like to thank the Environmental Safety Alliance of Sacramento, California.

Corresponding Author: Ryan Sinclair, Loma Linda University School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92350. E-mail: rsinclair@llu.edu.

References

References continued from page 13

Did You Know?
NEHA is excited to participate in the Canna West: Compliance, Testing, & Product Safety Summit, June 5–7, 2018, in Redondo Beach, California. This premier cannabis event brings regulators and policy makers together with cannabis operators, testing labs, and equipment and technology providers. NEHA is facilitating a panel session about effective regulatory and industry partnerships titled “Allies or Adversaries? Glimpses Into Regulatory and Industry Dynamics.” Go to https://infocastinc.com/event/cannabis-compliance-west for more information—enter 182406 and receive a 10% discount.

NEW
NEHA PROFESSIONAL FOOD MANAGER ONLINE COURSE
• Prepare for the ANSI/CFP certification exam wherever you are
• Start and stop to fit your schedule
• Same great content as Food Manager textbook
• Created by food safety experts
• Easy to navigate
• Check your progress along the way

Paperback books are also available. To learn more call (303) 802-2166 or visit neha.org
Elevated Blood Lead Levels in Buncombe County Children: Implications of Lowering the North Carolina Intervention Level to the Centers for Disease Control and Prevention Blood Lead Reference Value

Abstract Public health interventions in North Carolina were implemented only for children with blood lead levels (BLLs) ≥10 µg/dL until the end of the year in 2017, although the Centers for Disease Control and Prevention (CDC) established 5 µg/dL as a revised reference value for identifying children with elevated BLLs in 2012. This study quantified and characterized the children with elevated BLLs in Buncombe County, North Carolina. A review of case reports of Buncombe County children was conducted through the North Carolina Lead Surveillance System online database. In all, 23 children had confirmed elevated BLLs (≥10 µg/dL) from 2005–2015, while 146 children had BLLs within 5 to <10 µg/dL from 2012–2015. Most of the identified children (62%) lived in Asheville and were 1–2 years old (65%). A significant number of children will be aided and prevented from further lead exposure since North Carolina has lowered the BLL intervention standard to the CDC reference value in 2012. The need for additional staffing at local health departments has been identified to adapt to such change.

Introduction Lead is among the most common environmental pollutants, and was used in gasoline, water pipes, and lead-based paint, which is the most significant source of lead exposure today in the U.S. (Anna, 2011). Although fatalities due to lead poisoning are rare in modern times, the risk of elevated blood lead levels (BLLs) and the adverse cognitive effects in children due to these exposures is still present (American Academy of Pediatrics, 2005). Children and infants are more vulnerable to lead poisoning due to the immaturity of their organ systems, growing bodies, high gastrointestinal absorption, and frequent hand-to-mouth habits (Cunningham, 2012). As a result of the increased susceptibility of younger populations, impairment in child development occurs and affects cognitive, behavioral, motor, and physical abilities (Binns, Campbell, & Brown, 2007). High BLLs in children have been shown to be associated with decreased IQ (Binns et al., 2007; Lanphear et al., 2005).

Knowledge of potential lead sources is crucial in determining high-risk populations. The three main sources of lead exposure in children in the U.S. are deteriorating lead-based paint, lead-contaminated dust, and lead-contaminated soil (Binns et al., 2007). Most homes built before 1960 and a few built before 1979 were painted with lead-based paint (Anna, 2011). Moreover, higher rates of lead poisoning were found in geographic areas with higher poverty and/or that have larger minority populations. When investigating North Carolina, eastern counties that have children with high BLLs were also high-poverty areas with large minority populations (Hanchette, 2008). Many other high-poverty areas in the state, however, were not found to have elevated BLLs in children, indicating that there might be other explanations for higher lead exposures (Hanchette, 2008). Strategies for locating high-risk areas for childhood lead poisoning include selection based on GIS and narrowing down land parcels and neighborhoods based on poverty data and the year homes were constructed (Wilmott, 2009). Such strategies can eventually aid in the risk identification process for health departments and pediatricians (Wilmott, 2009). Considering these factors, lead toxicity in children typically comes from two groups: children living in impoverished conditions and aging homes with poor maintenance, and children from middle- and upper-class families that renovate aging homes without proper anti-contamination measures (Lanphear, 2005).

While the problem has lessened in recent decades, the issue has not vanished as children continue to be exposed to sources of lead. The most recent public health issue related to lead exposure was the contamination of the water supply in Flint, Michigan, exposing thousands of residents and increasing concerns of families for the safety of their children (McLaughlin & Shoichet, 2016). Moreover, recent research showed that BLLs <10 µg/dL still have effects on childhood
ment and physical development (Binns et al., 2007). In response to this growing evidence, the Advisory Committee on Childhood Lead Poisoning, in conjunction with the Centers for Disease Control and Prevention (CDC), is currently recommending that the level of lead exposure that is to be deemed a risk for children be reduced from the previous 10 µg/dL to 5 µg/dL (Cunningham, 2012). There still exists the consistent need for the promotion and funding of research to further understand the health effects of blood lead levels <10 µg/dL (Binns et al., 2007).

Until the end of the year 2017, North Carolina Department of Health and Human Services (NC DHSS) considered an “elevated blood lead level” confirmed when a BLL was ≥10 µg/dL for two consecutive tests conducted within 6 months (NC DHSS, 1999). BLLs were tested through capillary (i.e., finger prick) or venous blood collection. The specific method of blood collection used, however, was not always indicated in the case records. Once these conditions were met, the local health department advised the child’s guardian and the managing agent of their residence (if applicable) in writing on how to identify potential lead hazards and how to remediate any issues. An investigation from the health department could have been offered at this time, but was not required. If BLLs were consistently >20 µg/dL, however, an investigation became a requirement, as well as remediation. Such interventions can benefit the affected children by preventing further exposure to lead sources.

In 2012, CDC recommended that health departments decrease their intervention level for blood lead from 10 µg/dL to 5 µg/dL. Until the end of the year 2017, the state of North Carolina did not require adaptation to this change, but recommended that children with BLLs >5 µg/dL receive follow-up testing (Norman & Turner, 2012). Thus, since 2012, there are a number of children in Buncombe County with BLLs of 5 to <10 µg/dL who might have benefited from this change but were excluded from repeat screenings and interventions because North Carolina did not adopt the CDC reference value immediately. North Carolina passed a new state budget in 2017 that allowed for lowering the blood lead intervention level to 5 µg/dL, triggering the investigation and remediation components of the amended state law by January 1, 2018 (Norman, 2017). The investigation and remediation components are offered and not required for BLLs of 5–9 µg/dL. BLLs of 10 µg/dL or above will require both investigation and remediation. The purpose of this study was to quantify and characterize the children with elevated BLLs (>10 µg/dL) and those with BLLs of 5 to <10 µg/dL in Buncombe County prior to the change in the North Carolina state law.

Methods

Study Participants

Participants in this study were children in Buncombe County, North Carolina, who had existing lead reports available on their cases from 2005–2015. These reports were created in local and/or state records once a child has a detected BLL, and potentially becomes a part of the investigation process depending on several factors (e.g., initial blood lead level, confirmation test results, guardian’s wishes). Buncombe County is located in the western part of the state in the mountainous region. Based on the 2010 census, the population was documented as 238,318 residents, with an estimated 22% of residents being children <18 years old (U.S. Census Bureau, American FactFinder, n.d.). Residential locations of children included in the study were Alexander, Arden, Asheville, Barnardsville, Bent Creek, Biltmore Forest, Black Mountain, Candler, Fairview, Leicester, Montreat, Ridgecrest, Royal Pines, Sandy Mush, Swannanoa, Weaverville, and Woodfin.

Data Collection

We collected secondary data on Buncombe County children by reviewing archived lead reports through the Buncombe County Department of Health, the North Carolina Lead Surveillance System (NC LEAD) online database, geographical maps, and other relevant documents from the North Carolina Childhood Lead Poisoning Prevention Program. With the goal of providing direct access to clinical and environmental data related to childhood lead exposure, NC LEAD is a module of the North Carolina Electronic Disease Surveillance System, a component of the web-based surveillance and reporting systems initiative by CDC (NC DHSS, 2017).

The data pool includes all children tested with at least 1µg/dL of lead detected in the blood. Information collected included demographic data (i.e., age, sex, location of neighborhood residence) and BLLs of these children. Children were categorized based on BLLs (≥10 µg/dL; 5 to <10 µg/dL). Cases with confirmed BLLs ≥10 µg/dL from 2005–2015 were easily identified from the data pool. Due to the tedious process of manually reviewing individual case reports in the NC LEAD database to identify children with BLLs of 5 to <10 µg/dL, however, only records from June 2012 (when CDC changed the blood lead reference value) to October 2015 were reviewed, as the software program used did not allow data search by “blood lead level” as a parameter but instead could only segregate cases with confirmed BLLs ≥10 µg/dL from the data pool. Data obtained through manual review of individual case reports were manually entered into spreadsheets. Personal identifiers (i.e., name) that could link information to the participants were removed. Permission under HIPAA rules and approval from the East Carolina University Institutional Review Board (approval # UMCIRB 15-00462) were obtained prior to data collection.

Data Analysis

Frequencies and percentages for categorical measures were summarized, while means and standard deviations for continuous measures were determined. Microsoft Excel was used to create worksheets for tabulation and further analysis. Analysis of variance (ANOVA) was conducted to compare mean BLLs by age, sex, and residence location using the online VassarStats statistical software with p < .05 considered statistically significant.

Results

Children With Elevated BLLs (≥10 µg/dL) From 2005–2015

We identified 23 children having confirmed elevated BLLs (≥10 µg/dL) from the 2005–2015 database. When confirming an elevated BLL, the lower of the two tests that show BLLs ≥10 µg/dL was designated as the official BLL for the course of the investigation. The average BLL recorded for these children was 14.1 µg/dL, ranging from 10–28 µg/dL. The majority (56.5%, n = 13) had BLLs from 10–12 µg/dL, while 30.4% (n = 7) had BLLs from 13–15 µg/dL (Figure 1). More than half (56.5%, n = 13) of the children were male (Table 1). The average age of children
affected was 19.9 months old. More than half (56.5%) of the children were in the age range of 12–23 months, with an average BLL of 13.92 ± 5.31 µg/dL. The majority of these children (52.2%) were located within the city limits of Asheville, followed by Black Mountain (17.5%), and Arden (8.8%). Neighborhood locations categorized under “other” included Candler, Leicester, Swannanoa, Weaverville, and one unrecorded, with each location having one child with confirmed elevated BLLs (Table 1). No significant differences were found in average BLLs by sex (p = .44), age (p = .23), or location (p = .54).

While North Carolina law requires local environmental health departments to follow up on these cases, many have not been able to or have not yet reached conclusion. Although not documented in the database, the reasons that these cases were closed upon attempted follow-up included but were not limited to 1) BLL was within acceptable levels during follow-up blood test, 2) family moved out of the county’s jurisdiction, 3) children aged out of 6-year-old surveillance age, or 4) parent or guardian refused service from the health department. In all, 13 of these cases were closed without conclusion. As of December 2015, four cases were still ongoing due process, and therefore have not yet reached the investigation or communication stage with parent or guardian. Three cases were caused by parental occupation wherein parents were exposed to lead at work and then brought home the lead contaminants, resulting in exposure of the child. One case was found to be due to exposure to peeling lead paint in the area around the home (i.e., play area located immediately outside of the home), while another case was found to be due to peeling paint within the home.

Children With BLLs of 5 to <10 µg/dL From 2012–2015

We manually reviewed a total of 6,000 NC LEAD records of children with BLLs >1 µg/dL from June 2012–October 2015 to identify those with BLLs from 5 to <10 µg/dL. Of these reviewed records, 146 (2.4%) had BLLs of 5 to <10 µg/dL, which reflects the number of children who would have received government intervention from the environmental health department from June 2012–October 2015 if the new CDC blood lead reference value had been immediately adapted.

Out of these 146 children, 63.7% (n = 93) were found to be within the city limits of Asheville (Table 2). Specifically, 9 (6.1%) resided in Weaverville, 7 (4.8%) in Black Mountain, 6 (4.1%) in the town of Fairview, and 12 (8.2%) children in “other” residence locations were spread among the small communities of Alexander, Bent Creek, Fletcher, Montreat, Ridgecrest, and Royal Pines (Table 2). Moreover, out of the children with BLLs of 5 to <10 µg/dL, 61% (n = 89) were male. The average age of these children was 17.00 ± 7.26 months, or about 1–2 years of age, and their average blood lead level was 5.91 ± 1.27 µg/dL.

Table 3 shows the number, average age, and average BLL of these 146 children by year from 2012–2015. Only the last 6 months of 2012 were studied due to CDC changing their recommended reference value on June 2012. The year with the highest number of children with BLLs of ≥5 to <10 µg/dL (n = 51) was 2013, with an average of 4.3 children per month. There was a decreasing trend yearly in the average age of children during this period, while the yearly average BLLs were steady.

Considering the 23 children with BLLs of >10 µg/dL from 2005–2015 and the 146 children with BLLs of ≥5 to <10 µg/dL from 2012–2015, 169 children would have been the total number of children investigated from 2005–2015 as a result of CDC lowering the reference value for identifying children with elevated BLLs for government intervention. The average age of these 169 children was 17.4 ± 7.8 months. Table 4 shows the demographic distribution of these children by age, sex, and residence location. The majority of the children (64.5%, n = 109) were in the age range of 1–2 years and were male (59.8%, n = 101). A majority (62.1%, n = 105) were found to be within the city limits of Asheville, followed by 6.5% (n = 11) in Black Mountain, and 5.9% (n = 10) in Weaverville. The cities with the least number of children were Alexander, Bent Creek, Candler, Marshall, and Ridgecrest, with one child (0.6%) in each city.

Discussion

This study showed that most of the children with elevated BLLs were within the city limits of Asheville. This finding could be attributed to the presence of older homes and apartments within the city limits as a risk factor to lead exposure, as several studies have shown associations between older homes and elevated BLLs (Binns et al., 2007; Kim, Staley, Curtis, & Buchanan, 2002; Whitehead et al., 2014). According to Sperling’s Best Places (2015), the median age of homes in Asheville is 42 years old, which is 5 years older than the median for the U.S. Furthermore, Hanchette (2008) stated that houses built pre-1950 are concentrated in cities and towns, partially...
explaining the pattern of lead poisoning in these areas with older homes.

Binns and coauthors (2007) reported that among houses built prior to 1940, 68% contain lead hazards; 43% of houses built between 1940–1959 and 8% of houses built between 1960–1977, respectively, contain lead hazards. Moreover, a study by Whitehead and coauthors (2014) found that dust in older homes contained higher levels of lead and other persistent chemicals compared with dust in newer homes.

It must be recognized that at-risk populations not only include children from low-income and/or minority families in older homes but also children from many middle-class families who are moving into historic neighborhoods with older houses that underwent subsequent renovation, including those in ZIP codes considered to be at high risk (Crotty & Eldridge, 2013). Specifically, the Environmental Health Section of the North Carolina Division of Public Health provides a list of all North Carolina ZIP codes in which all children should undergo blood lead screening due to high-risk lead exposure (NC DHHS, 2016).

North Carolina, specifically in Buncombe County, has a need for improved prevention strategies and outreach for lead exposure among children from families of varying socioeconomic status. Another factor to investigate is the role of day care centers in children’s lead exposure, as most of these centers are located within city limits. Risk factors in day care centers are similar to those found in residential properties, including lead-based paint as a potential source in older facilities (Button, 2008). A Cincinnati study by Button found that lead concentrations in the soil within 1.5 m from the exterior walls of day care centers were significantly higher than concentrations found in soil from the remainder of the playground. The same study also found higher lead concentrations in soil at day care centers located closer to interstate highways, which usually are within city limits.

Other possible sources of lead exposure for children located within city limits might also include older schools, libraries, and other building structures, and warrant further investigation. It must be noted, however, that based on 2014 data, 33% of Buncombe County’s residents were within Asheville city limits (U.S. Census Bureau, QuickFacts, n.d.), which might contribute to the higher proportion of children with elevated BLLs in Asheville.

The age of children with elevated BLLs in Buncombe County was found to be in the range of 1–2 years old, which agrees with the general understanding that children of early toddling age are at the highest risk of elevated BLLs. Taking this age range as a definitive representation of the age when children are most likely to ingest lead, however, is discouraged because most of the blood lead levels were obtained at milestone birthdays such as 12 and 24 months. BLLs were not monitored continuously in between these milestone ages and, therefore, do not necessarily reflect the age when children begin ingesting lead.

One important finding in this study demonstrates the striking difference between the number of children who benefited from government interventions due to having BLLs ≥10 µg/dL and the number of children who were in the gray area of having BLLs above the CDC recommendation of 5 µg/dL for government intervention, but did not reach the previous North Carolina government intervention level of 10 µg/dL. While there were fewer than 10 children each year with BLLs ≥10 µg/dL, there were 30–50 children annually who had BLLs between 5 and <10 µg/dL. While we did not have complete data from 2015 when this paper was written, the recorded number of children in the range of 5 to <10 µg/dL for 2015 was 33. These data demonstrate that there was a need for more

TABLE 1

Average Blood Lead Levels (BLLs) of Children With Confirmed Elevated BLLs (≥10 µg/dL) in Buncombe County, North Carolina, by Age, Sex, and Residence Location, 2005–2015 (n = 23)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th># (%)</th>
<th>Average BLL</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13 (56.5)</td>
<td>13.07 ± 3.64</td>
<td>.44</td>
</tr>
<tr>
<td>Female</td>
<td>10 (43.5)</td>
<td>19.70 ± 9.83</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td><12 months</td>
<td>1 (4.3)</td>
<td>12.58 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>12–23 months</td>
<td>13 (56.5)</td>
<td>13.92 ± 5.31</td>
<td></td>
</tr>
<tr>
<td>24–59 months</td>
<td>9 (39.1)</td>
<td>12.56 ± 2.19</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td>.54</td>
</tr>
<tr>
<td>Asheville</td>
<td>12 (52.2)</td>
<td>12.58 ± 4.66</td>
<td></td>
</tr>
<tr>
<td>Black Mountain</td>
<td>4 (17.5)</td>
<td>14.00 ± 1.41</td>
<td></td>
</tr>
<tr>
<td>Arden</td>
<td>2 (8.8)</td>
<td>14.00 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5 (21.7)</td>
<td>14.33 ± 5.13</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

Number of Children With Blood Lead Levels ≥5 to <10 µg/dL by Residence Location in Buncombe County, North Carolina, 2013–2015 (N = 146)

<table>
<thead>
<tr>
<th>Residence Location</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asheville</td>
<td>93</td>
<td>63.7</td>
</tr>
<tr>
<td>Weaverville</td>
<td>9</td>
<td>6.1</td>
</tr>
<tr>
<td>Black Mountain</td>
<td>7</td>
<td>4.8</td>
</tr>
<tr>
<td>Fairview</td>
<td>6</td>
<td>4.1</td>
</tr>
<tr>
<td>Leicester</td>
<td>5</td>
<td>3.4</td>
</tr>
<tr>
<td>Barnardsville</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>Swannanoa</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>Arden</td>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>Woodfin</td>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
<td>8.2</td>
</tr>
</tbody>
</table>

involvement from the local health department with these 33 children.

Before the amended North Carolina state law, these children in the gray area (i.e., children with BLLs between 5 and <10 µg/dL) were not recommended to have follow-up blood work and the health department did not contact the families for additional information. Unless they had guardians who were proactive enough in acquiring more information about the children's current BLLs and researching the implications for themselves, or unless they were fortunate enough to have doctors take notice of these BLLs and review related potential risks and causes, these children could have been exposed to dangerous lead levels with no precautions or interventions.

Several studies have shown that there is no safe BLL in children, and that very low BLLs can negatively affect their behavioral and cognitive functions (i.e., decreased IQ) (Bellinger, 2008; Canfield et al., 2003). Thus, providing interventions to children with BLLs ≥5 µg/dL will prevent further lead exposure and, consequently, reduce both the severity of its health effects and the number of affected children.

It is important to note that local health departments might not have the staff and capability to reach out to children who have BLLs that fall between 5 and <10 µg/dL. In Buncombe County, at the time of writing, the responsible personnel in the local health department had a full workload in addressing a handful of cases that require intervention annually. As North Carolina lowers the intervention standard to the CDC reference value, in order to be capable of efficiently handling 4–10 times the current workload, additional training of other staff members or hiring additional employees would be necessary to meet a workload that involves more repeat lead screenings.

This increased staffing need was recognized by the state when the law was amended (Norman, 2017). Consequently, purchasing additional equipment (i.e., X-ray fluorescence analyzers) required to detect and quantify lead in paint, toys, and furniture would likely need to be considered, especially if more investigations will be conducted. This equipment can be expensive to purchase and maintain, and thus such equipment is not always readily available. Area county departments must often wait until a state regional specialist with access to such equipment can travel to conduct an inspection with the local health department. The lack of resources, combined with a growing demand from the public, would likely result in lengthy wait times before children can be helped. This delayed intervention would only amplify problems for individual children as they risk continued exposure while they wait for assistance.

As North Carolina implements the changes on the BLL standard, related issues on funding, time constraints, and staffing will need to be addressed by health departments. Conducting a cost-benefit analysis regarding the adaptation to the CDC reference value in Buncombe County and other North Carolina counties will be beneficial, but is not within the scope of this study. The state’s Childhood Lead Poisoning Prevention Program is currently addressing these issues internally as preparations are being made to expand the program’s workload.

TABLE 3

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>2012a</th>
<th>2013</th>
<th>2014</th>
<th>2015a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of children per year</td>
<td>29</td>
<td>51</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Number of children per month</td>
<td>4.1</td>
<td>4.3</td>
<td>2.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Age of children (months)</td>
<td>18.1 ± 6.7</td>
<td>17.5 ± 7.6</td>
<td>16.9 ± 7.1</td>
<td>16.7 ± 6.1</td>
</tr>
<tr>
<td>BLL of children (µg/dL)</td>
<td>6.2 ± 1.4</td>
<td>5.7 ± 1.1</td>
<td>5.8 ± 1.2</td>
<td>6.1 ± 1.4</td>
</tr>
</tbody>
</table>

*a*June–December 2012.

*b*January–October 2015.

TABLE 4

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 year</td>
<td>7</td>
<td>4.1</td>
</tr>
<tr>
<td>1–2 years</td>
<td>109</td>
<td>64.5</td>
</tr>
<tr>
<td>3–5 years</td>
<td>53</td>
<td>31.4</td>
</tr>
<tr>
<td>>5 years</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>101</td>
<td>59.8</td>
</tr>
<tr>
<td>Female</td>
<td>68</td>
<td>40.2</td>
</tr>
<tr>
<td>Residence location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asheville</td>
<td>105</td>
<td>62.1</td>
</tr>
<tr>
<td>Black Mountain</td>
<td>11</td>
<td>6.5</td>
</tr>
<tr>
<td>Weaverville</td>
<td>10</td>
<td>5.9</td>
</tr>
<tr>
<td>Fairview</td>
<td>6</td>
<td>3.6</td>
</tr>
<tr>
<td>Leicester</td>
<td>6</td>
<td>3.6</td>
</tr>
<tr>
<td>Swannanoa</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>Arden</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>Barnardsvlle</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>Woodfin</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Fletcher</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Montreat</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Royal Pines</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Bent Creek</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Alexander</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Ridgcrest</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Candler</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Marshall</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Changes being implemented include increased staffing of environmental health regional specialists (Norman, 2017).

Strengths and Limitations

Findings of this study shed some light on the political, financial, and other implications of lowering the BLL for intervention to the recommended CDC reference value.
This study might be extended to other counties in North Carolina to further determine other factors that can affect the implementation of the change in intervention level. While Buncombe County is an advantageous county to study due to its large size and mix of rural and urban communities, a larger sample would provide a better understanding of children who will benefit from this policy change, as well as the needed resources to implement the policy change. If all 100 North Carolina counties could not be studied due to financial and other constraints, the selection of North Carolina counties to study can be based on certain parameters such rural versus urban, high versus low population, or by regions (i.e., Eastern, Western, and Piedmont).

Several challenges were encountered in collecting data for this study. As the program was in need of updating, the NC LEAD online database offered no simple way to sort entries by BLL or date of screening. The only item available to use to narrow down results was the ability to look at only Buncombe County data instead of the whole state. Therefore, it was necessary to manually collect data by starting at the most recent children tested to have at least 1 µg/dL of BLL, and scroll chronologically to open each child’s file one at a time. When this study was conducted, the program was tailored more for employees who know the exact name or case ID of the child being investigated. It is hoped that with the advancement of the North Carolina Lead Program, the online database will be improved accordingly to become more efficient for government employees in conducting searches and analyses.

Conclusion

This study investigated the number of children in Buncombe County who had confirmed elevated BLLs (≥10 µg/dL) in the last 10 years, and children who had BLLs from 5 to <10 µg/dL since mid-2012. The latter data set was studied to determine the implications of CDC lowering their recommended reference value for BLL for government intervention from 10 µg/dL to 5 µg/dL as applied to North Carolina, specifically to Buncombe County. Toddlers living within the city limits of Asheville were more likely to have the highest risk of lead exposure than children of other ages and residential locations.

A significant number of children will benefit from governmental interventions in preventing further lead exposure as North Carolina lowers the intervention standards to include children with BLLs of 5 µg/dL or more. This study confirmed the need for policy change in North Carolina to stay in step with the CDC recommendation by revising the standard for government intervention and supports North Carolina’s recent policy change. Prior to the change in North Carolina standards, only a small portion of children were aided through local health departments compared with a higher number of children who could have been assisted if standards had been more quickly adjusted to the CDC recommendation.

The recent adaptation of North Carolina to the CDC recommendation will be beneficial to a significant number of children affected by lead exposure. A change of this magnitude, however, will be feasible only if there is also an increase in staffing in local health departments, which entails more financial resources, as already recognized by the state. The results of this study indicate that researchers and policy makers can work together cooperatively to help to protect public health.

Corresponding Author: Jo Anne G. Balanay, Associate Professor, Environmental Health Sciences Program, Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, 3407 Carol Belk Building, 300 Curry Court, Greenville, NC 27858. E-mail: balanayj@ecu.edu.

References

continued on page 22

Did You Know?

You can get more involved with NEHA by checking out www.neha.org/membership-communities/get-involved. Volunteering is a good way to make a positive contribution to the profession and get to know your association.

A credential today can improve all your tomorrows.
The first new Lead Paint XRF Analyzer in more than a decade

The Heuresis Pb200i is a giant leap forwards in lead paint inspection technology, created by the people who invented handheld XRF. At only 1.3 lbs, this easy-to-use instrument packs heavyweight performance in a rugged, waterproof housing. With Positive/Negative readings in as little as 1 second*, you'll go from inspection to report in almost no time at all. Plus, the feature-rich platform takes advantage of an Android™ operating system to support an integrated color camera, GPS, Bluetooth™, Wi-Fi and email, all of which work together to help you document and share your results.

Learn more, contact us at www.heuresistech.com for specs, quotes, or to arrange a FREE demonstration

*Typical reading time at 1.0 mg/cm² with 2-sigma confidence on most samples
Building Capacity to Support the Use of Geospatial Modeling for Vectorborne Disease Control: West Nile Virus as a Case Study

Abstract We surveyed public health and vector control agencies in the U.S. to identify barriers restricting the implementation of geospatial modeling for West Nile virus (WNV) control. We conducted 18 standardized interviews with public health and vector control agencies in states with the highest cumulative human WNV cases. Agencies were organized by their implementation of geospatial modeling (Initial: Implementation and Support; Internal: Surveillance and Mitigation, and External: Outreach and Communication) and thematic analysis was used to identify barriers and best practices. Initial: Implementation and Support agencies reported funding and educational barriers, while Internal: Surveillance and Mitigation agencies reported surveillance data challenges and mistrust of geospatial modeling as limiting geospatial modeling usage. Agencies involved in External: Outreach and Communication reported policy guidelines and lack of public interest as barriers to using geospatial modeling for WNV control. To overcome these challenges, we identified the use of unified resource programs, local data repositories, and multi-stakeholder taskforces for addressing these challenges to WNV control. The findings from this study can be used to help improve WNV control within the U.S. and might be equally valuable for preemptively mitigating the impacts of emerging and reemerging mosquito-borne diseases.

Introduction The use of geospatial modeling technologies for vector surveillance, control, and prediction has increased rapidly within the last decade. A myriad of geospatial modeling tools implemented in QGIS, R, and ArcGIS have allowed researchers to examine vector presence, abundance, and biodiversity for a variety of vectorborne diseases (VBDs) with respect to time and space (Brown, Diuk-Wasser, Andreadis, & Fish, 2008; Diuk-Wasser, Brown, Andreadis, & Fish, 2005; Eisen & Eisen, 2011; Harrigan, Thomassen, Buermann, & Smith, 2014; Winters et al., 2008).

These advances ideally should allow public health agencies to effectively use limited operational funds, increase their flexibility and response, and improve coordination with other stakeholders. Despite these advances, most public health agencies continue to use traditional empirical methods of VBD surveillance and control, with limited integration of geospatial modeling techniques to enhance these methods.

The gap between the potential use of geospatial modeling and actual practice for VBD control is evident in the case of West Nile virus (WNV) in the U.S. In response to the emergence and spread of WNV in the U.S. starting in 1999, the Centers for Disease Control and Prevention (CDC) collaborated with public health departments and academic institutions to develop WNV surveillance and mitigation guidelines (CDC, 2000; Gubler et al., 2000).

These guidelines serve as the foundation for a national arbovirus program and outline public health and vector control efforts to monitor WNV infections in humans, birds, mosquitoes, and other vertebrate hosts (Lindsey, Staples, Lehman, & Fischer, 2010). These guidelines continue to be used for WNV control efforts across the U.S., with minor variations dependent on the specific agency features and access to local resources (CDC, 2013).

In addition, the U.S. government has invested significant research dollars to examine factors contributing to the distribution of WNV. For example, within the past five years, the National Institutes of Health (NIH) has invested more than $250 million aimed at understanding and improving the ability to model and predict WNV transmission (NIH, 2018).

As a result of these studies, a growing body of literature has demonstrated that geospatial modeling techniques can be used to examine a variety of facets, such as the spatial heterogeneity of vectors and hosts and applications into predictive modeling (Brown, Childs,
To focus our efforts in areas with significant WNV burden, we reviewed cumulative human WNV case count data from the 2015 U.S. Geological Survey Disease Maps (CDC, 2018) for each of the 50 states for the 10-year period from 2004–2013. We selected 11 states based on a combination of regional distribution and highest WNV cumulative human case counts (Table 1).

For these 11 states, we used the CDC’s county-level ArboNET data to identify counties with the highest WNV human case activity. Within these counties, we identified local public health and vector control agencies involved in WNV-control efforts through a series of Internet searches and agency referrals. In selected counties that lacked local public health or vector control departments (n = 3), state-level health departments were included. The resulting agency sampling frame (n = 22) consisted of 8 stand-alone public health agencies, 7 stand-alone vector control agencies, and 6 combined vector control/public health agencies. Potential interviewees (n = 24) in each of these agencies were identified after speaking with individuals in these departments to identify staff involved in WNV control activities.

Once potential interviewees were identified, they were sent a recruitment e-mail followed by a phone call from a member of the research team. This resulted in an interview pool of 18 individuals representing 7 stand-alone public health departments (both state and local), 6 combined public health and vector control programs, and 5 stand-alone vector control agencies. All interviews were digitally recorded and transcribed using a software program called Transcribe.

The structured interview guide consisted of questions regarding current WNV surveillance and mitigation practices, and specifically, whether their WNV control program used geospatial modeling techniques. For agencies not using geospatial modeling techniques, we asked open-ended questions to elucidate why their agency was not employing these methods and what barriers prevented them from using these tools. Agencies that indicated they were using geospatial modeling techniques were asked additional questions about how their program uses these techniques to enhance their WNV activities.

We analyzed interview data using a qualitative data analysis program called Dedoose, using a thematic analysis approach (Saldaña, 2015) Thematic codes (n = 91) were used to identify underlying concepts that linked recurrent statements about WNV control priorities and challenges, and benefits and barriers with regard to implementation of geospatial modeling techniques. We then refined emergent themes and used a comparative approach across agencies to identify connections between concepts (Saldaña, 2015). The same researchers conducted the coding and analyses to maintain quality consistency and authors discussed thematic coding results for relevancy, followed by further recoding and redefining of appropriate themes.

Results

Based on these interviews, barriers reported by agencies correlate with the category at which the agency was using geospatial modeling for their WNV programs (Tables 2–4). Agencies that were interested in applying geospatial modeling techniques into their WNV program typically described barriers related to the initial implementation and support of geospatial modeling. Agencies that were using geospatial modeling internally for their WNV program generally described barriers related to surveillance and mitigation, while agencies that had already integrated geospatial modeling into their WNV program both internally and externally discussed barriers related to communication and outreach. Below, we examine the main barriers reported within each of these categories.

Initial: Implementation and Support

Individuals from 28% (5/18) of all agencies interviewed reported being in the early stages of geospatial modeling. All but one stand-alone public health agency within this category reported insufficient funding as a primary barrier restricting the application of geospatial modeling within their WNV programs. Individuals reported that the high up-front cost to obtain and maintain software licenses for geospatial programs and geocoding devices prevented their agencies from using geospatial modeling within their WNV programs. Additionally, budgetary constraints related to hiring geospatial modelers were also cited. Furthermore, funding was consistently cited as a barrier among agencies within the later stages of geospatial modeling implementation for their WNV programs.

The second barrier reported by agencies within this category was the high learning...
curve required to use geospatial programs. These software programs often require individuals to take multiple courses or tutorials to gain familiarity with the management of geospatial data. Interestingly, this barrier was frequently reported by local public health agencies that were unable to allocate the time and resources necessary for geospatial modeling proficiency. By contrast, the statewide public health agency within this category did not report challenges to learning geospatial software, possibly indicating that more geospatial modeling resources and training opportunities exist at the state level.

Internal: Surveillance and Mitigation

Individuals from 39% (7/18) of the agencies interviewed reported that their agencies were using geospatial modeling for surveillance and mitigation of WNV. All but one of the stand-alone public health departments interviewed expressed challenges associated with using avian surveillance, such as dead bird reporting, as a predictor for identifying WNV risk. Despite literature supporting the use of dead bird surveillance as an early indicator for WNV activity (Eidson, Komar, et al., 2001; Eidson, Kramer, Stone, Hagiwara, & Schmit, 2001; Mostashari, Kulldorff, Hartman, Miller, & Kulasekera, 2003), many agencies reported decreasing utilization of avian surveillance for predicting WNV risk. One particular public health agency adequately explained:

We don’t do dead bird surveillance anymore. What ended up happening is that we’d get WNV-positive humans before we would get birds or horses or anything like that. It just wasn’t all that useful for us and we’ve grown out of that.

The decrease in avian surveillance effectiveness could be attributed to several factors, such as increasing avian resistance to WNV (Reed et al., 2009), biases among birds sampled (Ezenwa, Godsey, King, & Guptill, 2006; Foss et al., 2015; Reed et al., 2009), and the decreasing public reporting of dead birds within their neighborhoods (Eidson, Kramer, et al., 2001; Komar, 2006; Mostashari et al., 2003). Additionally, once an area has become endemic for WNV, avian surveillance loses much of its scientific interest and control programs often shift their efforts toward other WNV surveillance mechanisms (CDC, 2017).

Despite this shift, current CDC WNV guidelines (CDC, 2013) draw attention to the use of the Dynamic Continuous-Area Space-Time (DYCAST) program (Theophilides, Ahearn, Grady, & Merlino, 2003), which uses geospatial modeling of dead bird reports to predict WNV risk. Unfortunately, given the aforementioned problems with dead bird surveillance, the effectiveness of the DYCAST program has decreased over time (Carney et al., 2011), highlighting how existing efforts should be refocused to identify robust data sources for predicting WNV risk.

A second challenge within this category was a perceived inability to conduct geospatial analyses using mosquito surveillance data due to inconsistent spatial coverage. Individuals from both stand-alone public health and vector control agencies within this category believed inadequate mosquito surveillance prevented them from conducting geospatial analyses. This perception is concerning, as a primary strength of geospatial modeling is its ability to help elucidate environmental factors correlated with WNV prevalence in mosquitoes, thereby helping in situations where surveil-

TABLE 2

<table>
<thead>
<tr>
<th>Barrier Reported</th>
<th>Stand-Alone Public Health Agency (n = 4)</th>
<th>Stand-Alone Vector Control Agency (n = 0)</th>
<th>Combined Public Health and Vector Control Agency (n = 1)</th>
<th>Agencies Reporting Barrier (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgetary constraints</td>
<td>3</td>
<td>NA</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>High learning curve</td>
<td>2</td>
<td>NA</td>
<td>1</td>
<td>75</td>
</tr>
</tbody>
</table>

Note. NA indicates that no individuals from this type of agency were placed within this stage of implementing geospatial modeling.

TABLE 3

<table>
<thead>
<tr>
<th>Barrier Reported</th>
<th>Stand-Alone Public Health Agency (n = 2)</th>
<th>Stand-Alone Vector Control Agency (n = 2)</th>
<th>Combined Public Health and Vector Control Agency (n = 3)</th>
<th>Agencies Reporting Barrier (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ineffective avian surveillance</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td>Spatially incomplete mosquito data</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>View geospatial modeling as research*</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Home used as proxy for exposure site</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>29</td>
</tr>
</tbody>
</table>

*Of all stand-alone and combined public health agencies, 39% believed geospatial modeling to be unreliable.
Barriers Reported by Interviewees at Agencies Already Using Geospatial Modeling for Internal and External Purposes (n = 6)

<table>
<thead>
<tr>
<th>Barrier Reported</th>
<th>Stand-Alone Public Health Agency (n = 1)</th>
<th>Stand-Alone Vector Control Agency (n = 3)</th>
<th>Combined Public Health and Vector Control Agency (n = 2)</th>
<th>Agencies Reporting Barrier (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPAA constraints</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Lack of public trust</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

HIPAA = Health Insurance Portability and Accountability Act.
that public health agencies might be unaware of the problems experienced by stand-alone vector control agencies, and that enhanced intra-agency channels of communication are needed for effective WNV control activities.

By contrast, both combined and stand-alone public health agencies reported challenges in maintaining public interest in WNV activity, despite providing real-time WNV geospatial human case data and intensive public health messaging. Despite public projects such as the previously mentioned Disease Maps, public health agencies reported drawbacks to having such data available during observed periods of low WNV presence (Lindsey, Lehman, et al., 2010; Lindsey, Staples, et al., 2010). One individual from a public health agency in this category explained: People will see that we only have a few cases in our county of WNV one year, even though we [public health] know that it’s largely underreported. This reduces WNV as a threat, and people become accustomed to not taking precautionary measures during the WNV season.

To counteract the lack of public WNV preparedness, public health agencies reported spending considerable resources on public education programs, only to be met with disinterest. Lack of public interest in WNV presents a substantial challenge for WNV programs, which must provide WNV control despite declining public interest and decreasing availability of funds.

This trend became a substantial issue during the 2012 WNV season, in which a lack of public interest combined with decreased government spending for WNV contributed to an unprecedented number of WNV human cases \(n = 5,674\) in the U.S. since the initial 1999 WNV outbreak (CDC, 2018).

Furthermore, the 2012 WNV season highlights a larger systematic need for public funds to reflect current public health risks such as WNV. To begin to address these issues, new approaches to public communication might be required in order to balance the fine line between community awareness and message oversaturation, while still bolstering WNV resiliency among communities.

Discussion

To develop recommendations to overcome these barriers, we identified best practices within the interviewed agencies for each of the three stages of implementation. These recommendations aim to improve the implementation of geospatial modeling efforts for WNV control activities.

Unified Sharing of Geospatial Modeling Resources

Within the Initial: Implementation and Support category, combined public health/vector control agencies reported fewer budgetary and learning constraints compared with stand-alone public health agencies. This finding suggests that stand-alone public health agencies within this category could benefit from uniting with stand-alone vector control agencies within their jurisdictions to share geospatial training and resources (such as hardware).

Additionally, resource sharing would have the co-benefit of fostering more robust intra-agency communication and partnership development. While we recognize that stand-alone public health and vector control agencies have distinct data collection roles with regard to WNV surveillance, unified geospatial training sessions would allow for greater appreciation of the challenges experienced by their partner agencies.

Development of Local Shared Data Repositories

To address barriers related to use of geospatial modeling within the Internal: Surveillance and Mitigation category, agencies would benefit from developing local shared data repositories that include both human and nonhuman WNV surveillance data, similar to CDC's national ArboNET platform (Lindsey, Lehman, et al., 2010). Agencies, however, need access to real-time shared data at a local scale in order to effectively perform geospatial analyses of WNV risk factors. Additionally, increased accessibility to local geospatial WNV surveillance data would increase agency response time and flexibility to changing conditions.

Furthermore, increased application of geospatial modeling can help remove the spatial and resource limitations associated with mosquito surveillance. An abundance of literature supports the use of geospatial modeling techniques to enhance spatial coverage for areas not currently surveyed due to resource or personnel limitations (Anderson, Andreadis, Main, & Kline, 2004; Apperson et al., 2002; Brown, Diuk-Wasser, et al., 2008; Chuang, Henebry, et al., 2012; Diuk-Wasser, Brown, Andreadis, & Fish, 2006; Harrigan et al., 2014; Liu & Weng, 2012; McFeeters, 2013; Morin & Comrie, 2010; Ruiz et al., 2010; Su, Webb, Meyer, & Mull, 2003; Sugumaran, Larson, & DeGroote, 2009). Thus, for agencies currently using geospatial modeling for internal purposes, the creation of shared local WNV surveillance data repositories could facilitate optimal use of limited surveillance resources.

Creation of Multi-Stakeholder Taskforces

To address barriers within the External: Outreach and Communication category, we recommend that agencies hold regular meetings of multi-stakeholder taskforces, which include stakeholders associated with WNV control. This best practice was identified among some of the combined public health/vector control agencies:

Funding has been a major gap for us, but through constant communication with the city council, mayor, and commissioner of health, they’re providing us assistance and funding and we’re trying our best to do what we can for the city.

Multi-stakeholder taskforces are an important mechanism for facilitating partnerships between agencies involved in WNV control and other government agencies that can support these efforts. Additionally, further benefits reported were greater support for WNV spraying initiatives, increased funding, and greater public awareness. More localized planning, transparency, and outreach among agencies can help empower communities to be more vigilant with regard to WNV precautions and emphasize the need for WNV mitigation efforts. Furthermore, regularly scheduled stakeholder meetings can allow for more rapid information transfers, such as for human case data between stand-alone public health and vector control agencies, as well as decrease the reluctance associated with HIPAA constraints.

Limitations and Future Research

We should acknowledge that our analyses on the use of geospatial modeling for vector control had several limitations. First, potential sample bias might be present, as participants were from states with the highest WNV cumulative human case counts for the 2004–
could be improved (e.g., with the goal of try-
phasized the extent to which their agencies
study, certain agencies might have overem-
versely, given the confidential nature of this
seeming underprepared or outdated. Con-
grams in a more positive tone for fear of
have aggrandized their WNV control pro-
were likely to be from well-developed WNV
the greatest number of barriers in all
categories, and that combined public health
agencies experience fewer challenges in using
gespatial modeling for WNV
The barriers articulated by agencies and their
best practices highlight the need to increase
geospatial modeling resources across
agencies, create locally shared repositories
of surveillance data, and form regional multi-

Reference

Acknowledgement: We would like to thank Catherine Nameth for her help in providing qualitative research materials and guidance. R.J.H. was supported by NSF grant #PD-08-1269.

Corresponding Author: Bryan Moy, University of California, Los Angeles Fielding School of Public Health, 650 Charles E. Young DR S, 56-070 CHS, Los Angeles, CA 90095-1772. E-mail: bryanwmoy@gmail.com.

References
Diuk-Wasser, M., Brown, H.E., Andreadis, T.G., & Fish, D. (2005). Spatial prediction of West Nile virus vector abundance in Con-

continued on page 30
References continued from page 29

Did You Know?

As the geographic range of vectors continues to grow and evolve, easily accessible and reliable information on vectors and vectorborne diseases is needed. NEHA has developed a highly informative and interactive web page where visitors can learn about vectors known to be present in their states, as well as view related diseases and surveillance and control methods. Check out the map at www.neha.org/vector-map. This map is phase one of a continuing project. Phase two will provide programmatic resources to help build and improve vector control programs and will be released in summer 2018.

Environmental Health Data Collection

Management for Inspection and Permitting

cdpehs.com | (800) 888-6035

- Anytime, anywhere access to inspections data—online or offline
- Unique toolsets for data analysis, reporting, and monitoring
- Robust security and protection for sensitive and critical data
- Inspection processing/tracking
- Permitting and licensing
- Activity tracking
- Foodborne illness investigations
- Public viewing of inspections
- Financial management
- Document management
- Offline field capabilities
- Form-based field solution

Food Protection | Lodging | Septic | Wells | Mobility
Recreational Water | Complaints | Service Requests

June 2018 • Journal of Environmental Health
Building Capacity
Gadget by Gadget

Darryl Booth, MBA

Editor’s Note: A need exists within environmental health agencies to increase their capacity to perform in an environment of diminishing resources. With limited resources and increasing demands, we need to seek new approaches to the business of environmental health.

Acutely aware of these challenges, NEHA has initiated a partnership with Accela called Building Capacity. Building Capacity is a joint effort to educate, reinforce, and build upon successes within the profession, using technology to improve efficiency and extend the impact of environmental health agencies.

The Journal is pleased to publish this bimonthly column from Accela that will provide readers with insight into the Building Capacity initiative, as well as be a conduit for fostering the capacity building of environmental health agencies across the country.

The conclusions of this column are those of the author(s) and do not necessarily represent the views of NEHA.

Darryl Booth is senior vice president and general manager of environmental health at Accela and has been monitoring regulatory and data tracking needs of agencies across the U.S. for almost 20 years. He serves as technical advisor to NEHA’s informatics and technology section.

As a young professional working for a software company and new to environmental health, my boss asked me to exhibit at the National Environmental Health Association’s Annual Educational Conference (AEC) & Exhibition. I was anxious and had no idea what to expect. My boss kindly spent some time to describe the event, the exhibition floor, and what to expect. I remember him telling me, “and there’s always this guy who sells gadgets, mirrors, thermometers, flashlights, black lights, etc.” Gadgets! Who doesn’t love gadgets?

For more than 20 years, I’ve reflected on those early days as I’ve prepared for each AEC and regional conference. And more often than not, I’ve found that table with the red tablecloth that is crowded to the edge with stainless steel devices. It’s a perennial favorite and always worth a look.

While LED flashlights and thermal probes are standard fare, there’s continued enthusiasm for new digital gadgets.

Must-Have Digital Gadgets
Your mobile phone, for example, is now an indispensable device for communications, navigation, photos, video, quick research, and access to a myriad of cloud-based systems.

For most inspectors, a tablet computer (or laptop) is also essential to capture inspection results in real time, provide canned content (e.g., standard comments), and deliver a professional report to your operator.

Your “mobile office” might also include a Wi-Fi hot spot or even a portable printer.

Compelling Digital Gadgets
Next, we have the gadgets that prompt us to seek new efficiencies and conveniences. These gadgets might not be commonplace, but they are defensible additions.

On a regular basis I am asked about connected thermal probes, and more specifically, thermal probes with a wireless interface to inspection software that can enable an inspector to move quickly down the line and see each measurement automatically recorded. The hardware and wireless connection are commonplace—just Google it—but we still lack a universally accepted data format and transfer standard. Each vendor has its own approach. So, your software vendor or internal information technology department will still have to finish the job and commit to a specific device.

In some regions, dependent upon food codes and policies, a physical inspection report is delivered to retail food operators. It’s commonplace for inspectors to carry with them one of the low-cost portable printers currently on the market. These printers
are relatively lightweight, battery powered, rechargeable, and wireless. Unfortunately, the portable printer often stays in the car until the end of the inspection. And carrying the consumables (e.g., special paper) is enough to make many jurisdictions opt to deliver inspection reports as PDFs via e-mail.

Both delivery methods have their devotees. At least one large jurisdiction offers a hybrid. Good inspection findings are sent to operators via e-mail (with copies sent to corporate), while more serious findings are printed and handed to the operator (in addition to the e-mail).

While relying on public Wi-Fi might seem the way to go, most inspectors benefit from built-in connectivity, a mobile Wi-Fi hot spot, or permission to use their phone as a hot spot. This technology is a game changer. With access to the Internet and your cloud data, information moves bidirectionally in a regular, even flow.

Gadgets With Promise

For hunt-and-peck typists, speech-to-text is alluring. The suggestion that one could dictate inspection findings and relevant notes hands-free feels like an ideal arrangement. In a controlled pilot it can work, and it’s getting better all the time. Experience and anecdotal evidence have confirmed, however, that inspectors will spend more time tweaking the transcription than they would have saved by avoiding the typing. Today, strict but improving command syntax, coupled with loud work environments and imperfect microphones, make this technology a promising but “not quite there” option.

Video will be a game changer one day soon. Video recordings once produced unwieldy and large files that were unsearchable and difficult to store and transfer. Driven by consumer applications, video is increasingly being generated and stored in the cloud in real time. YouTube, a cloud-based system for receiving, storing, and delivering video, now receives and processes 300 hr of new video every minute!

Google and other providers have invested in automated processes that can transcribe audio content, as well as identify common objects (e.g., a cook surface versus a bathroom fixture), thus making the video searchable by text. Law enforcement can already identify faces from video feeds. Can you imagine how your focus will change when you’re wearing a Google Glass or body camera at all times during an inspection? Everything observed becomes a matter of record, making inspector observations automatic and instantly recorded.

This section could go on for pages. Just consider how self-driving cars will impact the field inspector’s workday. Then, contemplate how this technology will impact the supply chain, lowering costs and introducing real-time monitoring. It’s easy (and fun) to get starry eyed about the future.

How Long Must We Wait?

If environmental health was the only industry pressing for the technology, it could take a very long time. Fortunate for us, the future state is being pushed today by consumers (representing huge financial drivers) and businesses, each seeking gains in personal convenience and reduced costs. In my career, constant Internet access has gone from a theory (remember your bag phone) to an inexpensive reality. In the coming decade, ubiquitous access to cloud-based technology and artificial intelligence will be our new reality.

Continue the conversation in the Building Capacity in Environmental Health Group on LinkedIn (www.linkedin.com/groups/6945520).

Corresponding Author: Darryl Booth, Senior Vice President and General Manager of Environmental Health, Accela, 2633 Camino Ramon #500, San Ramon, CA 94583. E-mail: dbooth@accela.com.

Did You Know?

New stories have been posted on NEHA’s A Day in the Life of an Environmental Health Professional blog. Read about the opioid epidemic, Denver’s rapid population growth, food trucks, emergency preparedness, and other interesting topics from members on the blog at www.neha.org/day-in-life-blog.
Introduction

Until recent decades, the focus of disaster management remained largely on attributes of the physical world, primarily risk assessments of the threat of natural and anthropogenic hazards to the built environment. The concept of social vulnerability within a disaster management context received increasing attention when researchers recognized that a more complete assessment of risk must also include the socioeconomic and demographic factors that affect community resilience (Flanagan, Gregory, Hallisey, Heitgerd, & Lewis, 2011; Juntunen, 2005).

All regions of the U.S. have experienced natural and human-caused disasters. The hazards that precipitate these disasters will continue to occur in the future. Hazards can be large scale, such as hurricanes and earthquakes, or they can be relatively localized in extent, such as tornadoes or chemical spills. Although hazard events might be relatively benign, they can culminate in disaster—severe injuries, emotional distress, loss of life, and property damage—to the extent of destroying entire communities. In both the short- and long-term future, disasters can have devastating health, social, and economic consequences for affected areas and their inhabitants.

Our work draws on research that examines vulnerability as a social condition or as a measure of the resilience of population groups when confronted by disaster (Cutter, Boruff, & Shirley, 2003). Social vulnerability is defined in terms of the characteristics of a person or community that affect their capacity to anticipate, confront, repair, and recover from the effects of a disaster. Some examples of factors that might affect a person’s social vulnerability include socioeconomic status, household composition, minority status, and vehicle access. The social vulnerability literature reveals that populations living in a disaster-stricken area are not affected equally (Bolin, 2006). Evidence indicates that the poor are more vulnerable at all stages of a catastrophic event, as are racial and ethnic minorities, children, elderly, and disabled people (Morrow, 1999). Socially vulnerable communities are more likely to experience higher rates of mortality, morbidity, and property destruction, and are less likely to fully recover in the wake of a disaster compared to communities that are less socially vulnerable (Juntunen, 2005).

Social Vulnerability Index Database

Pursuant to the Pandemic and All-Hazards Preparedness Act of 2006 that cited public health and medical preparedness and response capabilities as a critical national need, the Geospatial Research, Analysis, and Services Program (GRASP) at Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry created a Social Vulnerability Index (SVI) database and mapping tool designed to assist state, local, and tribal disaster management officials in identifying the locations of their most socially vulnerable populations (Agency for Toxic Substances and Disease Registry [ATSDR], 2018).

To date, GRASP has produced national social vulnerability indices for years 2000, 2010, 2014, and 2016. We constructed the index at census tract level, a geographic scale commonly used to analyze community data for policy and planning in government and

Editor's Note: As part of our continued effort to highlight innovative approaches to improve the health and environment of communities, the Journal is pleased to publish a bimonthly column from the Agency for Toxic Substances and Disease Registry (ATSDR) at the Centers for Disease Control and Prevention (CDC). ATSDR serves the public by using the best science, taking responsive public health actions, and providing trusted health information to prevent harmful exposures and diseases related to toxic substances. The purpose of this column is to inform readers of ATSDR’s activities and initiatives to better understand the relationship between exposure to hazardous substances in the environment, its impact on human health, and how to protect public health.

The conclusions of this column are those of the author(s) and do not necessarily represent the official position of ATSDR or CDC.
Each SVI database comprises 15 census variables, except for the 2010 index as the U.S. Census Bureau did not collect disability data that year (ATSDR, 2018). Each of the census variables was ranked from highest to lowest vulnerability across all census tracts in the nation with a nonzero population. A percentile rank was calculated for each census tract for each variable. The variables were then grouped among four themes (Figure 1). A tract-level percentile rank was also calculated for each of the four themes. Finally, an overall percentile rank for each tract as the sum of all variable rankings was calculated. This process of percentile ranking was then repeated for the individual states.

In a second approach to identifying social vulnerability, we flagged each tract having a variable with a percentile rank ≥90 and summed the tract flags to produce counts for each theme and overall. This approach identifies tracts having a high percentile ranking on one or more variables for which overall vulnerability is masked by other variables having low percentiles.

The mapping of these data (Figure 2) reveals geographic patterns of potential vulnerability to disaster that can be used in all phases of the disaster cycle: preparedness, response, recovery, and mitigation (Morrow, 1999). The SVI database can assist public health officials to better prepare for and respond to emergency meteorological and geological events, disease outbreaks, and human-caused incidents.

SVI Database Use and Validation

The SVI database is used in disaster management by several U.S. state and local governments, as well as several private sector organizations. Examples of studies using the SVI database include:

- mapping fire outbreaks and vulnerability metrics to target aid during emergencies (Lue & Wilson, 2017);
- hazard mitigation planning studies (Horney et al., 2017; Horney, Simon, Grabich, & Berke, 2015);
- adult physical inactivity (An & Xiang, 2015; Gay, Robb, Benson, & White, 2016); and
- use of the SVI database, or portions of it, to assess social vulnerability and physical hazards (e.g., sea level rise, flooding, tornadoes, volcanic risk, house fires), hazard awareness, rural/urban differences, migrant and refugee populations, and health status (e.g., youth fitness).

An ongoing GRASP validation effort exists to further clarify the scope and utility of the SVI database. Here we highlight several projects used in our validation effort. A post-Katrina recovery study in New Orleans, Louisiana, found that heavily damaged communities were slow to recover regardless of neighborhood characteristics. Communities with socially vulnerable populations, however, were also slow to recover even without heavy flood damage, and vulnerable communities experiencing heavy damage were slowest to recover (Flanagan et al., 2011). A study in Georgia showed significant spatial clustering and increased rates of extreme heat-related mortality and emergency department visits in areas of high social vulnerability (Adams et al., 2016). Following a series of hurricanes in 2017, the SVI database was applied to media reported mortality data to better understand hurricane-related deaths (Lavery, 2017). A study coupling data from the SVI database with health and environmental data reported the database as a significant predictor of asthma emergency department rates with the strength of prediction varying across counties in the study area (Kolling, Wilt, Berens, Stosnider, & Devine, 2017).

The SVI database has been cited over 100 times in the academic literature (http://researchgate.net/publication/274439003). Finally, an independent effort to validate several social vulnerability indices as guides to disaster preparation, recovery, and adaptation finds that the SVI database compares well to other indices, especially with regard to explaining property losses and fatalities (Bakkensen, Fox-Lent, Read, & Linkov, 2017).

Conclusion

Opportunities for expanding the application of the SVI database could include disaster
and nondisaster related uses. The database can be used to examine correlations between aggregate health disparities in communities and potential social barriers to access to care. Forthcoming analyses at the Centers for Disease Control and Prevention aim to identify potential interactions between social vulnerability and environmental burdens faced by communities, including air, water, and soil contamination. Lastly, we believe the SVI database can be productively applied to a myriad of other hazards, threats, and social or health outcomes that communities might encounter in the coming years.

Corresponding Author: Barry E. Flanagan, Social Geographer, Agency for Toxic Substances and Disease Registry, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30329-4018. E-mail: fur7@cdc.gov.

References

Accela Environmental Health works, for everyone.

Whether you're processing applications, capturing payments, or reporting on your organization's activities, Accela Environmental Health delivers clarity and efficiency to your work.

Organize your health program information with a single, powerful data management solution that connects your department, streamlines workflows and makes it easy to manage functions unique to each program's needs.

Ready to make it work for you?

Learn how: www.accela.com/jeh

See you at the NEHA 2018 AEC & HUD Healthy Homes Conference!

Stop by booth 210 to experience how Accela Environmental Health amplifies your department's work at the front counter, in the back office and out in the field.
Introduction
The Centers for Disease Control and Prevention's (CDC) National Center for Environmental Health released a free e-learning curriculum in January 2018 titled Safe Water Program Improvement (SWPI). With approximately 34 million American residents served by privately owned wells (National Ground Water Association, 2016), there is a need for training on how health departments can improve their services to homeowners. CDC developed the curriculum for state, local, tribal, and territorial health departments as a resource to improve safe drinking water programs focused on private wells and other federally unregulated drinking water. CDC designed the SWPI curriculum using the 10 Essential Environmental Public Health Services (EEPHSs) (Figure 1) and the Environmental Public Health Performance Standards (Centers for Disease Control and Prevention, 2014) as frameworks.

CDC developed the SWPI e-Learning series through a partnership with the National Network of Public Health Institutes (NNPHI); the Texas Health Institute; Tulane University School of Public Health and Tropical Medicine, Center for Applied Environmental Public Health; and the National Environmental Health Association (NEHA). Two environmental health subject matter experts authored the nine courses with continual feedback from all partners. The SWPI e-Learning series uses the latest technology for enhanced learner centric interaction with engaging graphics. The average time to finish each course ranges from 1–2 hr depending on how the learner uses the resources and tools.

Course Highlights
The SWPI e-Learning series is firmly rooted in best public health practices consisting of an introduction and three core public health functions: assessment, policy development, and assurance. The SWPI e-Learning series consists of nine courses that take the learner through lessons and activities following the 10 EEPHSs. Each course lesson has knowledge checks to help the learner understand and apply the content. There are scenarios that help the learner think through and resolve problems using course content. Following a required introductory course, SWPI 101, eight courses cover the 10 EEPHSs (Table 1).

The SWPI e-Learning curriculum employs a “branching role play” technique that presents a complex, real-life example of a public health problem associated with private wells. The courses help the learner to understand how to operationalize the 10 EEPHSs as the problem unfolds. Additionally, learners have the opportunity to access tools and resources to improve partnering, outreach, communications, and research and evaluation skillsets. An engaging graphic from SWPI 104 (Figure 2), shows a methodical approach that the learner can use when developing a health communication plan. Resources linked to this course provide communication examples.

Particularly useful for the learner is how some courses define the role of the environmental health professional in safe water programs focused on federally unregulated drink-
ing water. This component is especially true in the courses addressing policies and plans, and laws and regulations. Another topic for environmental health managers who take the training is how to maintain and assure a competent workforce. The curriculum also provides content for management and examples that address workforce recruitment and retention, and emphasizes a proactive approach to comprehensive workforce planning.

Individuals completing all courses and the final exam will receive a certificate of completion and have the option to receive continuing education credit through NEHA. In addition, the courses are crosswalked with the Public Health Accreditation Board domains and standards that can help programs working towards public health accreditation.

Conclusion

The SWPI e-Learning series provides much needed training at no cost to environmental and public health professionals working...
in safe water programs focused on federally unregulated drinking water. The curriculum provides practical and informative examples of operationalizing the 10 EEPHSs. There are course specific tools and resources to help learners apply their new knowledge in the field and help them improve their own program. The SWPI e-Learning series allows the learner to complete continuing education credit in a convenient, self-paced environment. The courses use a framework and learning approach that will benefit agencies seeking accreditation through the Public Health Accreditation Board. In addition to the references linked to each course, there are tools and resources at CDC’s Water, Food, and Environmental Health Services Branch website under the Safe Water section (www.cdc.gov/nceh/ehs) and through NNPHI’s Public Health Learning Network (www.nnpfi.org/phln). The SWPI e-Learning series is a practical tool for all environmental health professionals interested in improving the performance and quality of their safe drinking water programs.

Corresponding Author: Raquel Sabogal, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS F-38, Atlanta, GA 30341. E-mail: rsabogal@cdc.gov.

References

LEARN MORE

• Steps to Improve Drinking Water Programs: www.cdc.gov/nceh/ehs/safe-watch/steps-to-improve.html
• Safe Water Program Improvement e-Learning Series: http://lms.southcentralpartnership.org/swpi.php
• Improving Environmental Public Health Services Performance to Meet Community Needs: www.cdc.gov/nceh/ehs/envphps/docs/improving-eph-serv-perf-comm.pdf

Several of NEHA’s food safety trainings and credential prep courses are available online. The Professional Food Manager, Professional Food Handler, Certified Professional–Food Safety, and a multitude of HACCP courses can be taken at your own pace from the comfort of your office or home. Visit www.neha.org/store to learn more about NEHA’s online courses.

Did You Know?

Join the growing ranks of professionals who have attained NEHA’s most in-demand credentials in food safety. Whether your focus is retail foodservice or food manufacturing and processing, NEHA’s Certified Professional–Food Safety (CP-FS) and Certified in Comprehensive Food Safety (CCFS) credentials demonstrate you went the extra mile to get specialized knowledge and training in food safety. Give yourself the edge that is quickly being recognized, required, and rewarded in the food industry.

Learn more at neha.org/professional-development/credentials.
The Workhorse Instrument in the XRF Market!

Resource! Don’t Replace!

Make a difference in the battle against lead poisoning!

Protec Instrument Corporation has a proven track record for over 20 years!

Looking for a fast, efficient and easy to use testing device?

The LPA-1 provides non-destructive testing for lead on painted substrates with no false positives and HUD/EPA Compliant Reports. Our compact footprint allows you to fit where other analyzers fail to reach.

Run into issues in the field?

Protec’s educated technical support team is here to help!

Call Our Customer Service Team Today for a Quote!
Food Safety Inspector
UL Everclean is a leader in retail inspections. We offer opportunities across the country. We currently have openings for trained professionals to conduct audits in restaurants and grocery stores. Past or current food safety inspection experience is required.

If you are interested in an opportunity near you, please send your resume to ATTN: Sethany Dogra at LST.RAS.RESUMES@UL.COM or visit our website at www.evercleanservices.com.

United States
Albany, NY
Albuquerque, NM
Amarillo, TX
Anaheim, CA
Bakersfield, CA
Billings, MT
Binghamham, AL
Boise, ID
Boston, MA
Buffalo, NY
Cedar Rapids, IA
Charleston, SC
Chicago, IL
Cincinnati, OH
Coeur d’Alene, ID
Corpus Christi, TX
Eureka, CA
Galveston, TX
Grand Junction, CO
Grand Rapids, MI
Harrisburg, PA
Honolulu, HI
Houston, TX
Idaho Falls, ID
Little Rock, AR
Long Beach, CA
Los Angeles, CA
Lubbock, TX
Midland, TX
Montgomery, AL
Oakland, CA
Odessa, TX
Orlando, FL
Owatonna, MN
Pasadena, CA
Philadelphia, PA
Phoenix, AZ
Portland, OR
Providence, RI
Rapid City, SD
Richmond, VA
Rochester, NY
Saint Louis, MO
San Pedro, CA
Santa Monica, CA
Seattle, WA
Shreveport, LA
Sioux Falls, SD
Syracuse, NY
Tulsa, OK
Wichita, KS
Yuma, AZ

Canada
British Columbia
Calgary
Montreal
Toronto
Vancouver
Winnipeg

Updated and Redesigned to Meet the Needs of Today’s Learner
NEHA PROFESSIONAL FOOD MANAGER
5th Edition

INSIDE THIS EDITION
- Instructional design focused on improved learning and retention
- Content aligns with American Culinary Federation Education Foundation competencies
- Prepares candidates for CFP-approved food manager exams (e.g., Prometric, National Registry, ServSafe, etc.)
- All-new instructor guide and companion classroom materials
- Volume discounts for NEHA Food Safety Instructors

NEHA’s Professional Food Manager course is now available online. The course can be taken at any pace and prepares you for a CFP/ANSI-certified exam. Visit www.neha.org/node/59953 to sign up for the online course to advance your career.
Did You Know?

Over 300 informative, insightful, and interactive educational sessions covering a variety of environmental health topics will be offered at the NEHA 2018 AEC and HUD Healthy Homes Conference, June 25–28 in Anaheim, California. Topics include emergency preparedness, food safety, water quality, and healthy homes and communities. Find more information at www.neha.org/aec/sessions.
UPCOMING NEHA CONFERENCES

July 8–11, 2019: NEHA 2019 Annual Educational Conference & Exhibition, Nashville, TN.

NEHA AFFILIATE AND REGIONAL LISTINGS

Alaska
October 17–19, 2018: Annual Educational Conference, hosted by the Alaska Environmental Health Association, Lake Guntersville, AK. For more information, visit www.aeha-online.com.

Colorado
September 18–21, 2018: 63rd Annual Education Conference, hosted by the Colorado Environmental Health Association, Fort Collins, CO. For more information, visit www.cehaweb.com.

Florida
July 24–27, 2018: Annual Education Meeting, hosted by the Florida Environmental Health Association, Cape Canaveral, FL. For more information, visit www.feha.org.

Georgia
June 27–29, 2018: Annual Education Conference, hosted by the Georgia Environmental Health Association, Savannah, GA. For more information, visit www.geha-online.org.

Iowa
October 3–4, 2018: Fall Conference, hosted by the Iowa Environmental Health Association, West Des Moines, IA. For more information, visit www.ieha.net.

Montana
September 18–19, 2018: Fall Educational Conference, hosted by the Montana Environmental Health Association, Helena, MT. For more information, visit www.mehaweb.org.

Texas
October 22–26, 2018: Annual Education Conference, hosted by the Texas Environmental Health Association, Austin, TX. For more information, visit www.myteha.org.

Utah
September 25–27, 2018: Fall Conference, hosted by the Utah Environmental Health Association, Provo, UT. For more information, visit www.ueha.org/events.html.

Wisconsin
September 19–21, 2018: Educational Conference, hosted by the Wisconsin Environmental Health Association, Onalaska, WI. For more information, visit https://weha.net/events.

TOPICAL LISTINGS

Health in All Policies

Informatics
August 20–23, 2018: 2018 Public Health Informatics Conference, hosted by the National Association of County and City Health Officials and Centers for Disease Control and Prevention, Atlanta, GA. For more information, visit http://phiconference.org.

Uniformed Services

Vectors and Pest Control
September 11–14, 2018: 15th International Conference on Lyme Borreliosis and Other Tick-Borne Diseases, hosted by the Centers for Disease Control and Prevention, National Institutes of Health, and National Environmental Health Association, Atlanta, GA. For more information, visit www.neha.org/iclb2018.

Did You Know?

You can share your event with the environmental health community by posting it directly on NEHA’s community calendar at www.neha.org/news-events/community-calendar. Posting is easy (and free) and is a great way to bring attention to your event. You can also find listings for upcoming conferences and webinars from NEHA and other organizations.
Master of Public Health Degree

Generalist degree or Environmental Health Concentration

ONLINE

- No campus visits required
- Affordable “e-tuition” rates
- Practitioner Focused
- Graduate Certificates Available On-campus or Online

UNIVERSITY OF ILLINOIS SPRINGFIELD

For information contact Lenore Killam
217/206-6083 or e-mail LKILL2@uis.edu
www.uis.edu/publichealth

Our MPH-Environmental Health Concentration is fully accredited by the National Environmental Health Science and Protection Accreditation Council.

Did You Know?
The International Federation of Environmental Health (IFEH), in conjunction with Makerere University Environmental Health Students’ Association (MUEHSA), announce the call for abstracts for the 3rd IFEH Academic and 16th MUEHSA Scientific Conference, April 9–11, 2019, in Kampala, Uganda. The conference will bring together practitioners, researchers, academics, policy makers, and students from around the world to discuss recent research findings, developments, best practices, and innovations. Abstract submission is open until June 30. Go to http://ifehmuehsa2019.musph.ac.ug for more information.

Worried about what’s in your food?

Food testing is our business, we can help.

800.822.1650 WWW.QUANTEMFOOD.COM
Resource Corner highlights different resources that NEHA has available to meet your education and training needs. These timely resources provide you with information and knowledge to advance your professional development. Visit NEHA’s online Bookstore for additional information about these, and many other, pertinent resources!

National Environmental Health Association (2014)
The Registered Environmental Health Specialist/Registered Sanitarian (REHS/RS) credential is NEHA’s premier credential. This study guide provides a tool for individuals to prepare for the REHS/RS exam and has been revised and updated to reflect changes and advancements in technologies and theories in the environmental health and protection field. The study guide covers the following topic areas: general environmental health; statutes and regulations; food protection; potable water; wastewater; solid and hazardous waste; zoonoses, vectors, pests, and poisonous plants; radiation protection; occupational safety and health; air quality; environmental noise; housing sanitation; institutions and licensed establishments; swimming pools and recreational facilities; and disaster sanitation.
308 pages / Paperback
Member: $149 / Nonmember: $179

Certified Professional–Food Safety Manual, 3rd Edition
National Environmental Health Association (2014)
The Certified Professional–Food Safety (CP-FS) credential is well respected throughout the environmental health and food safety field. This manual has been developed by experts from across the various food safety disciplines to help candidates prepare for NEHA’s CP-FS credential exam. This book contains science-based, in-depth information about causes and prevention of foodborne illness, HACCP plans and active managerial control, cleaning and sanitizing, conducting facility plan reviews, pest control, risk-based inspections, sampling food for laboratory analysis, food defense, responding to food emergencies and foodborne illness outbreaks, and legal aspects of food safety.
358 pages / Spiral-bound paperback
Member: $179 / Nonmember: $209

Handbook of Environmental Health, Volume 1: Biological, Chemical, and Physical Agents of Environmentally Related Disease, 4th Edition
Herman Koren and Michael Bisesi (2003)
A must for the reference library of anyone in the environmental health profession, this book focuses on factors that are generally associated with the internal environment. It was written by experts in the field and copublished with the National Environmental Health Association. A variety of environmental issues are covered such as food safety; food technology; insect and rodent control; indoor air quality; hospital environment; home environment; injury control; pesticides; industrial hygiene; instrumentation; and much more. Environmental issues, energy, practical microbiology and chemistry, risk assessment, emerging infectious diseases, laws, toxicology, epidemiology; human physiology; and the effects of the environment on humans are also covered. Study reference for NEHA’s Registered Environmental Health Specialist/Registered Sanitarian credential exam.
790 pages / Hardback
Volume 1: Member: $195 / Nonmember: $215
Two-Volume Set: Member: $349 / Nonmember: $379

Herman Koren and Michael Bisesi (2003)
A must for the reference library of anyone in the environmental health profession, this book focuses on factors that are generally associated with the outdoor environment. It was written by experts in the field and copublished with the National Environmental Health Association. A variety of environmental issues are covered such as toxic air pollutants and air quality control; risk assessment; solid and hazardous waste problems and controls; safe drinking water problems and standards; onsite and public sewage problems and control; plumbing hazards; air, water, and solid waste programs; technology transfer; GIS and mapping; bioterrorism and security; disaster emergency health programs; ocean dumping; and much more. Study reference for NEHA’s Registered Environmental Health Specialist/Registered Sanitarian credential exam.
876 pages / Hardback
Volume 2: Member: $195 / Nonmember: $215
Two-Volume Set: Member: $349 / Nonmember: $379
Did You Know?

A selection of educational sessions will be recorded at the NEHA 2018 AEC and HUD Healthy Homes Conference, June 25–28 in Anaheim, California. Recorded sessions from the 2017 AEC are still available for purchase in our online store. These informative and insightful sessions allow you to stay up-to-date with the latest environmental health trends and topics. You can also earn continuing education credits for your NEHA credential. The recorded sessions can be purchased at www.neha.org/store.

Come see us at Booth 202!

Masters of Environmental Safety and Health Management

LEARN MORE AT FINDLAY.EDU
NEHA ORGANIZATIONAL MEMBERS

Sustaining Members

Accela
www.accela.com

Advanced Fresh Concepts Corp.
www.afcushi.com

Air Chek, Inc.
www.radon.com

Allegheny County Health Department
www.achd.net

American Chemistry Council
www.americanchemistry.com

Arlington County Public Health Division
www.arlingtonva.us

Association of Environmental Health Academic Programs
www.aehap.org

Baltimore City Health Department, Office of Chronic Disease Prevention
http://health.baltimorecity.gov/programs/health-resources-topic

Baltimore City Lead Hazard Reduction Program
www.baltimorehousing.org/glsh_lead

Baltimore County Department of Planning
www.baltimorecountymd.gov/Agencies/planning

Black Hawk County Health Department
www.co.black-hawk.ia.us/258/Health-Department

CDC ATSDR/DCHI
www.cdc.gov/nceh

Chemstar Corporation
www.chemstarcorp.com

Chester County Health Department
www.chesco.org/health

City of Independence
www.ci.independence.mo.us

City of Laramie
www.ci.laramie.wy.us

City of Milwaukee Health Department, CEH
http://city.milwaukee.gov/health/environmental-health

City of Racine Public Health Department
http://cityofracine.org/Health

City of St. Louis Department of Health
www.stlouis-mo.gov/government/departments/health

CKE Restaurants, Inc.
www.ckr.com

Coconino County Public Health
www.co.coninno.az.us/Health

Colorado Department of Public Health and Environment, Division of Environmental Health and Sustainability, DPU
www.colorado.gov/cdphe

Custom Data Processing, Inc.
www.cdphs.com

Diversey, Inc.
www.diversey.com

DuPage County Health Department
www.dupagehealth.org

Eastern Idaho Public Health Department
www.idaho.gov/health

Ecobond LRP, LLC
www.ecobondllp.com

Ecolab
www.ecolab.com

EcoSure
adalio.rosales@ecolab.com

Enviro-Decom Services
www.enviro-decom.com

Erie County Department of Health
www.eriecohealth.org

Georgia Department of Public Health, Environmental Health Section
http://dph.georgia.gov/environmental-health

Gila River Indian Community: Environmental Health Service
www.gricriver.org

Green Home Solutions
www.greenhomesolutions.com

Health Department of Northwest Michigan
www.nwh.org

HealthSpace USA Inc
www.healthspace.com

Hedgerow Software US, Inc.
www.hedgerowsoftware.com

Heuresis Corporation
www.heuresis.com

IAPMO R&T
www.iapmort.org

Jackson County Environmental Health
www.jacksoongov.org/442/Environmental-Health-Division

Jefferson County Public Health (Colorado)
http://jeffco.co/public-health

Kanawha-Charleston Health Department
http://kcddw.org

Kentucky Department of Public Health
http://chfs.ky.gov/dph

LaMotte Company
www.lamotte.com

Lenawee County Health Department
www.lenaweehealthdepartment.org

Louisiana State Board of Examiners for Sanitarians
www.lbses.org

Macomb County Health Department
jarrod.murphy@macombgov.org

Marathon County Health Department
www.co.marathon.wi.us/Departments/HealthDepartment.aspx

Maricopa County Environmental Services
www.maricopa.gov/651/Environmental-Services

Metro Public Health Department
www.nashville.gov/Health-Department.aspx

MFC Center for Health
drj141@aol.com

Multnomah County Environmental Health
https://multco.us/health

National Environmental Health Science & Protection Accreditation Council
www.nehsap.org

National Restaurant Association
www.restaurant.org

New Mexico Environment Department
www.envnm.gov

New York City Department of Health and Mental Hygiene
www1.nyc.gov/site/doh/index.page

Nova Scotia Environment
https://novascotia.ca/ns

NSF International
www.nsf.org

Oneida Indian Tribe of Wisconsin
https://oneida-nsn.gov/resources/environmental

Opportunity Council/Building Performance Center
www.buildingperformancecenter.org

Orkin Commercial Services
www.orkincommercial.com

Otter Tail County Public Health
www.co.ottertail.mn.us/494/Public-Health

Ozark River Portable Sinks
www.ozarkriver.com

Paper Thermometer Co.
www.paperthermometer.com

Polk County Public Works
www.polkcounty.org/publicworks

Protec Instrument Corporation
www.protecinstrument.com

SAI Global, Inc.
www.sailobal.com

Seattle & King County Public Health
www.kingcounty.gov/depts/health.aspx

Seminole Tribe of Florida
www.semitribe.com

Skegns’ Festival Foods
www.lefoods.com

Sonoma County Permit and Resource Management Division, Well and Septic Division
www.sonomacounty.ca.gov/Well-and-Septic

Southwest District Health Department
www.swdhi.org

Starbucks Coffee Company
www.starbucks.com

Starter Brothers Market
www.starterbros.com

StateFoodSafety.com
www.statefoodsafty.com

Steritech Group, Inc.
www.steritech.com

Sweeps Software, Inc.
www.sweepssoftware.com

Taylor Technologies, Inc.
www.taylortehnologies.com

Texas Roadhouse
www.texasroadhouse.com

Thurston County Public Health and Social Services Department
www.co.thurston.wa.us/health

Tri-County Health Department
www.tchd.org

Tyler Technologies
www.tylertech.com

Waco-McLennan County Public Health District
www.waco-texas.com/cms-healthdepartment

Washington County Environmental Health (Oregon)
www.co.washington.or.us/hhs/environmentalhealth

Waukesha County Environmental Health Division
www.waukesha.gov/index.aspx

Wegmans Food Markets, Inc.
www.wegmans.com

West Virginia Department of Health and Human Resources, Office of Environmental Health Services
www.dhhr.wv.gov

Yakima Health District
www.yakimacounty.us/27/Health-District

Educational Members

Bayor University
www.baylor.edu

Colorado State University
http://ceu-cvmbs.colostate.edu/academics/ehs

Eastern Kentucky University
http://ehs.eku.edu

Michigan State University, Online Master of Science in Food Safety
www.online.foodsafety.msu.edu

Old Dominion University
www.odu.edu/commhealth

The University of Findlay
www.findlay.edu

University of Georgia, College of Public Health
www.publichealth.uga.edu

University of Illinois Department of Public Health
www.uic.edu/publichealth

University of Illinois, Illinois State Water Survey
www.isws.illinois.edu

University of Illinois Springfield
www.uis.edu/publichealth

University of Kentucky
www.uky.edu

University of Maryland, College of Business, School of Business
www.umd.edu

University of Minnesota
www.authenticsolutions.com

University of Northern Colorado
www.uwstout.edu

University of Wisconsin–Madison, College of Engineering, and Mathematics
www.wisc.edu

Western Carolina University, School of Health Sciences
www.wsuv.edu

Western Michigan University
www.wmich.edu

West Virginia University
www.wvu.edu
The kids are here to learn. They don’t need to learn about *Escherichia coli*, *Staphylococcus aureus*, *Listeria innocua*...

Use Thermolabels to confirm lunch is served on properly sanitized dishware.

Search for “thermolabel” on YouTube.com to find our videos.
The board of directors includes NEHA’s nationally elected officers and regional vice-presidents. Affiliate presidents (or appointed representatives) comprise the Affiliate Presidents Council. Technical advisors, the executive director, and all past presidents of the association are ex-officio council members. This list is current as of press time.

National Officers
President—Adam London, MPA, RS, DAAS, Health Officer, Kent County Health Department, Grand Rapids, MI. adamlondon@gmail.com
President-Elect—Vince Radke, MPH, RS, CP-FS, DAAS, CPH, Environmental Health Specialist, Atlanta, GA. vinceradke@neha.org
First Vice-President—Sandra Long, REHS, PhD, Life Scientist, Atlanta, GA. sandrall@plano.gov
Second Vice-President—Sandra Long, REHS, RS, Inspection Services Supervisor, City of Plano Health Department, Plano, TX. sandra@example.com
Immediate Past-President—David E. Riggs, MS, REHS/RS, Longview, WA. drriggs@comcast.net
NEHA Executive Director—David Dyjack, DrPH, CIH, (nonvoting ex-officio member of the board of directors). Denver, CO. ddyjack@neha.org

Regional Vice-Presidents
Region 1—Matthew Reighter, MPH, REHS, CP-FS, Retail Quality Assurance Manager, Starbucks Coffee Company. Seattle, WA. mreighter@starbucks.com
Region 2—Keith Allen, MPA, REHS, DAAS, Director, City of Vernon Dept. of Health & Environmental Control, Vernon, CA. kallenrehs@yahoo.com
Region 3—Roy Kroeger, REHS, Environmental Health Manager, Cheyenne/ Laramie County Health Department, Cheyenne, WY. roykroeger@laramiecounty.com
Region 4—Sharon Smith, REHS/RS, Sanitarian Supervisor, Minnesota Department of Health, Underwood, MN. Region4VP@neha.org
Region 5—Tom Yyles, REHS/RS, CP-FS, Environmental Health Manager, Town of Flower Mound, TX. tomyyles@flower-mound.com
Region 6—Lyne Madison, RS, Environmental Health Division Director, Western UP Health Department, Hancock, MI. Region6VP@neha.org
Region 7—Vacant
Region 8—LCDR James Speckhart, MS, USPHS, Health and Safety Officer, FDA, CDER/Health and Safety Officer, Silver Spring, MD. Region8VP@neha.org
Region 9—Larry Ramdin, REHS, CP-FS, HHS, Health Agent. Salem Board of Health, Salem, MA. Region9VP@neha.org
Region 10—Joel Totah, MPH, REHS, Environmental Program Coordinator, Idaho Department of Health & Welfare, Boise, ID. Region10VP@neha.org

Affiliate Presidents
Alabama—Melanie Boggan, REHS, Assistant Environmental Health Director, Alabama Dept. of Public Health. melanie.boggan@adph.state.al.us
Arkansas—Piper Satterfield, RS, Fayetteville, AR. piper.satterfield@arkansas.gov
Business and Industry—Traci Slowinski, REHS, CP-FS, Dallas, TX. nehaha@outlook.com
California—Jahniah McGill, Vallejo, CA. oohlakamool@gmail.com
Colorado—Joshua Williams, Garfield County Public Health, Rifle, CO. jwilliams@garfield-county.com
Connecticut—Phyllis Amiodi, MPH, RS, REHS, Chief Sanitarian, Bristol Burlington Health District, Bristol, CT. brooklynypa@comcast.net
Florida—Gary Frank, gary.frank@flhealth.gov
Georgia—Tamika Pridgon, tamika.pridgon@dpd.ga.gov
Idaho—Sherise Jurries, Environmental Health Specialist Sr., Public Health-Idaho North Central District, Lewiston, ID. sjurries@phid.idaho.gov
Illinois—David Banaszynski, Environmental Health Specialist, Hoffman Estates, IL. davidb@hoffmanestates.org
Indiana—Jason Ravenscroft, Marion County Health Dept., Indianapolis, IN. jravens@marionhealth.org
Iowa—Michelle Clausen Rosen dall, MPH, REHS, Director of Environmental Health, Siouxland District Health Dept., Sioux City, IA. mclausen@sioxcity.org
Jamaica—Rowan Stephens, St. Catherine, Jamaica. info@japhi.org jm
Kansas—Shawn Estler, Saline County Environmental Services, Salina, KS. shawn.esterl@saline.org
Kentucky—Jessica Davenport, Kentucky Dept. of Public Health. jessica.davenport@ky.gov
Massachusetts—Leon Bethune, MPH, RS, Director, Boston Public Health Commission. West Roxbury, MA. leonbethune@aol.com
Michigan—Brian Cecil, BTC Consulting. hccel@msn.com
Minnesota—Nicole Hedeen, MS, REHS, Epidemiologist, Minnesota Dept. of Health, White Bear Lake, MN. nicole.hedeen@state.mn.us
Missouri—Stacie A. Duitsman, Kansas City Health Dept., Kansas City, MO. stacie.duitsman@kccmo.org
Missouri Milk, Food, and Environmental Health Association—Theresa Sharp, Public Health Investigator II, Springfield/Greene County Health Dept., Springfield, MO. tsrsharp@springfieldmo.gov
Montana—Alisha Johnson, Missoula City County Health Dept., Missoula, MT. alisha.johnson@mt.gov
National Capital Area—Kristen Pybus, MPA, REHS/RS, CP-FS, Fairfax County Health Dept. VA. kpybus@ncaeha.org
Nebraska—Harry Heafer, REHS, Environmental Health Specialist II, Lincoln-Lancaster County Health Dept., Lincoln, NE. hheafer@lincoln.ne.gov
Nevada—Erin Cavin, REHS, Environmental Health Specialist II, Southern Nevada Health District, Las Vegas, NV. nevadach@comcast.net
New Jersey—Pascal Nwako, MPH, PhD, REHS, CHES, DAAS, Health Officer, Camden County Health Dept., Blackwood, NJ. pn20@njlincs.net
New Mexico—Cecelia Garcia, MS, CP-FS, Environmental Health Specialist, City of Albuquerque Environmental Health Dept., Albuquerque, NM. cecelia@cabq.gov
North Carolina—Daniel Ortiz, Cumberland County Public Health, Aukayville, NC. dortiz@co.cumberland.nc.us
North Dakota—Grant Larson, Fargo Cass Public Health, Fargo, ND. glarson@cityoffargo.com
Northern New England Environmental Health Association—Brian Lockard, Health Officer, Town of Salem Health Dept., Salem, NH. bllockard@ci.salem.nh.us
Ohio—Paul DePasquale, MPA, RS, Stark County Health Dept., Canton, OH. depasqualep@starkhealth.org
Discover how your peers are working with multiple agencies, industries, and levels of government to build Bridges, Bonds, and Benefits to ensure the safety of the public and environment, and to further the environmental health profession.

Register today at neha.org/aec/register.
Attendees can register online after June 11, but must pay with credit card.

2018 AEC Hotel Information

<table>
<thead>
<tr>
<th>Designated Hotel</th>
<th>Designated Overflow Hotel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marriott Anaheim Hotel</td>
<td></td>
</tr>
<tr>
<td>ROOM BLOCK IS FULL</td>
<td></td>
</tr>
<tr>
<td>Hilton Anaheim Hotel</td>
<td></td>
</tr>
<tr>
<td>777 W. Convention Way</td>
<td></td>
</tr>
<tr>
<td>Anaheim, CA 92802</td>
<td></td>
</tr>
</tbody>
</table>

Nightly Rates
(Rates available until NEHA room block sells out.)

<table>
<thead>
<tr>
<th>Nightly Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$189 plus taxes and fees.</td>
</tr>
<tr>
<td>Rooms available during primary conference dates Saturday, June 23–Wednesday, June 27.</td>
</tr>
</tbody>
</table>

Session Agenda Available Online
The 2018 AEC Session Agenda is now available online at neha.org/aec/sessions.

Have a Great Time in Anaheim
Check out everything Anaheim has to offer at visitanaheim.org.
Welcome Students!
There are many reasons why students should attend the 2018 AEC.

Discounted Registration
Students receive a discounted rate and gain entry to all events and education sessions. They also receive a one-year NEHA membership with their registration!

Student Reception:
Tuesday, June 26
Interact and network with other fellow students and environmental health professionals including NEHA Executive Director Dr. David Dyjack. A professional photographer will be present to provide student attendees free professional headshots!

Student Poster Session:
Monday, June 25–Tuesday, June 26
This poster session is an excellent opportunity to showcase student research, interests, or area of study to over 1,000 environmental health professionals.

Details at neha.org/aec/students.

Preconference Courses and Exams
Attending the 2018 AEC is a great way to advance your career to the next level. Obtain a NEHA credential or certification, or attend one of our trainings and leadership workshops.

CFOI
The Certified Foodborne Outbreak Investigator (CFOI) credential is a new offering designed for professionals involved in foodborne outbreak investigations.

Instructional Skills Training
This new one-day training course gives participants the opportunity to sharpen their presentation, demonstration, facilitation, and other key skills. The course will greatly benefit anyone who gives presentations and seek to improve their abilities.

Visit neha.org/aec/preconference for full details and to view all preconference offerings.
NEHA’s Third App Challenge! Innovating for Environmental Health

By Solly Poprish (spoprish@neha.org)

In March 2016, the National Environmental Health Association (NEHA), with the support of Hedgerow Software (www.hedgerow-software.com) and Esri, launched its first app challenge—Innovating for Environmental Health. Individuals competed to develop apps that would achieve one of the Healthy People 2020 environmental health objectives as identified by the U.S. Department of Health and Human Services. The mission of the competition was to create apps that could be used by environmental health professionals or the communities they protect, as well as inspire data driven solutions to public health issues.

In summer 2017, we launched the second iteration of the Innovating for Environmental Health App Challenge with continued support from Hedgerow Software. This app challenge was different for a few reasons. First, we chose to focus on a specific environmental health topic: water quality. Second, we partnered with AngelHack, a global hackathon organization that organizes a series of app challenges all around the world that are weekend-long, in-person events bringing together groups of 100–500 developers and tech savvy competitors.

We participated in three events: the first in Los Angeles, California; the second in Detroit, Michigan; and the last in Silicon Valley, California. During these events, NEHA, along with local environmental health professionals, attended to advocate for environmental health and to inspire and guide teams to create apps that can solve water quality issues by utilizing environmental health data. Los Angeles’ winning team developed a reporting app that enables users to report location-based data such as water leakage from pipes and spills, which is then translated into reporting format and sent directly to relevant agencies to repair the issues faster. Detroit’s winning team utilized U.S. Environmental Protection Agency publicly available water system data to create an app that instantly provides drinking water quality information based on geographic location and the corresponding municipal water system. Both teams attended NEHA’s 2017 Annual Educational Conference (AEC) & Exhibition in Grand Rapids, Michigan, where they presented their apps during an education session and received the Innovative App Award at the 2017 AEC Awards Ceremony.

The final winning team from Silicon Valley will attend this year’s AEC in Anaheim, California. The winning team created Safe California, a platform and model that easily shares environmental health data to educate and empower residents. The 2018 Innovating for Environmental Health App Challenge is continuing to introduce developers to the environmental health community, and we are seeing the tangible impacts of bringing these two fields together. NEHA will continue its participation in the hackathon series through summer 2018.

Please visit www.neha.org/eh-topics/health-tracking-0/innovating-eh to learn more about the app challenge and see how you can get involved. If you are attending the 2018 AEC, please join us at the Innovating for Environmental Health session to hear from the innovative winners of the competition and to learn about the potential of integrating public data, technology, and environmental health.

NEHA 2018 General Election Results

By Faye Koeltzow (fkcoeltzow@neha.org)

Elections are a critical part of the democratic process and are one way to provide members a voice in the running of their organization. NEHA voting members have an opportunity to vote for candidates of contested board of directors and regional vice-president positions, as well as cast votes regarding proposed Articles of Incorporation and Bylaws changes. National officers of NEHAs board of directors serve a one-year term in each officer position (second vice-president, first vice-president, president-elect, president, and immediate past-president) for a total of five years. Regional vice-presidents serve three-year terms.

Eligible voters were encouraged to vote during the month of March. The deadline to vote was March 31, 2018. The following are results from the 2018 general election.

Articles of Incorporation and Bylaws Changes

By nearly 93% of the vote, NEHA members approved an amendment to the association’s bylaws to streamline membership categories from nine to five, as well as remove barriers in the membership criteria. The new categories include professional, emerging professional, retired professional, international, and life.

As an individual member, you will find that the new membership categories are straightforward and inclusive, and will allow for simplicity and ease in your yearly renewal. Students and recent graduates will continue to be recognized with their own membership category (emerging professional), but this category will also be expanded to include anyone who identifies themselves as just starting out in their career.

NEHA believes that our membership categories should reflect the needs of our constituents and today’s career paths. The result of this vote demonstrates that making a change to our membership categories will increase the value of membership for many of our current and future members.

NEHA will communicate more details about the changes between now and October 2018 when implementation of the new categories will begin. If you have questions or concerns about the upcoming changes to NEHAs membership, please contact Jonna Ashley, NEHAs membership manager, at jashley@neha.org.

Second Vice-President

There was one qualified candidate for the second vice-president position: Roy Kroeger, REHS. Kroeger ran unopposed and did not...
appear on the election ballot. His candidate profile was published in the March JEH. Kroeger will assume the second vice-president position at the close of the NEHA 2018 Annual Educational Conference (AEC) & Exhibition and U.S. Department of Housing and Urban Development Healthy Homes Conference in Anaheim, California, in June 2018.

Regional Vice-Presidents (RVPs)

NEHA’s membership is broken down into nine regions that represent U.S. geographic areas, as well as members in the U.S. military and abroad. The terms of three RVP positions expire in 2018—Region 2: Keith Allen; Region 3: Roy Kroeger; and Region 8: LCDR James Speckhart.

Regions 2 and 8 had only one eligible candidate and did not appear on the election ballot. Each of these candidates will automatically assume their RVP roles at the 2018 AEC in June 2018. There were two candidates for Region 3 and NEHA members residing in that region were able to vote for the candidates via the election ballot.

The unopposed and elected individuals will assume their positions at the close of the 2018 AEC and their terms will expire in 2021. All candidate profiles were published in the March JEH. The new (and returning) RVPs are as follows:

- Region 2: Jacqueline Reszetar, Nevada (Region 2 includes Arizona, California, Hawaii, and Nevada);
- Region 3: Rachelle Blackham, MPH, LEHS, Utah (Region 3 includes Colorado, Montana, Utah, Wyoming, and members residing outside of the U.S. [except members of the U.S. armed forces]); and
- Region 8: LCDR James Speckhart, MS, Maryland (Region 8 includes Delaware, Maryland, Pennsylvania, Virginia, Washington, DC, West Virginia, and members of the U.S. armed forces residing outside of the U.S.).

A listing of current NEHA national officers and RVPs, along with state breakdowns for each region, can be found on page 50. More information about NEHA’s governance, including its Articles of Incorporation and Bylaws, the election process, and associated deadlines, can be found at www.neha.org/about-neha/governance. Thank you to all members who participated in this year’s election! 🎈

Professional Food Handler Online Certificate Course

NOW AVAILABLE ONLINE

- Updated to the 2013 FDA Food Code
- Online assessment included
- ANSI accredited
- Secure Certificate of Training issued
- Two-hour course

Please contact nehatraining@neha.org or call 303-802-2166 to learn more.
Address Community Environmental Health Problems. Don’t miss this one.

While I have described some of the major touchstone sessions, let me be clear, there are plenty of sessions to pique and hold your interest no matter what part of the profession you represent. Some of these sessions include:

- Disasters on the Rise: The Centers for Disease Control and Prevention and Harris County Environmental Health Perspective on the 2017 Hurricanes;
- Opioids;
- San Francisco Bay Area Cannabis Foodborne Illness Outbreak Collaborated Response;
- Protecting the Public From West Nile Virus, Zika Virus, and Other Mosquito-Borne Illnesses Through Public Health Collaborations;
- Frequently Asked Questions About Unregulated Drinking Water; and
- Environmental Health and Wildfires.

Finally, a few words about our valued cohosts—the U.S. Department of Housing and Urban Development (HUD) and the Office of Lead Hazard Control and Healthy Homes. We are very excited that they and many of their grantees will be joining us again this year. You may recall that past HUD Secretary Julian Castro electrified our 2016 AEC attendees in San Antonio, Texas, and we are hoping that current HUD Secretary Dr. Ben Carson can squeeze us into his schedule to share his vision. There will be an abundant selection of healthy housing and built environment educational sessions from which to choose.

I’d like to finish at the beginning. We will offer several preconference workshops and credential review courses the weekend prior to the conference. We will deliver review courses for our Registered Environmental Health Specialist/Registered Sanitarian, Certified Professional–Food Safety, and Certified in Comprehensive Food Safety credentials, as well as food safety auditor and instructional skills trainings. The Survival Skills for Environmental Health Leaders Workshop will be hosted by Bob Custard and Dr. Sandra Whitehead. NEHA Membership Director Jonna Ashley will again offer an Affiliate Leadership Workshop intended to provide our state partners with ideas around best practices for small associations. New this year will be our Health Impact Assessment 101 Workshop. These review courses, trainings, and workshops are being offered to ensure that you and your local programs receive technical assistance and training to increase the likelihood of your success.

Bridges, Bonds, and Benefits. Your NEHA staff has collectively spent the last year securing the best talent, national influencers, and thought leaders for our 2018 AEC. We believe in bridges to other health professions. We value creating bonds with the private sector. The benefits of these values and beliefs will pay dividends well into the future. This conference feels right. We hope you are gratified and astonished.

Julian Castro electrified our 2016 AEC attendees in San Antonio, Texas, and we are hoping that current HUD Secretary Dr. Ben Carson can squeeze us into his schedule to share his vision. There will be an abundant selection of healthy housing and built environment educational sessions from which to choose.

I’d like to finish at the beginning. We will offer several preconference workshops and credential review courses the weekend prior to the conference. We will deliver review courses for our Registered Environmental Health Specialist/Registered Sanitarian, Certified Professional–Food Safety, and Certified in Comprehensive Food Safety credentials, as well as food safety auditor and instructional skills trainings. The Survival Skills for Environmental Health Leaders Workshop will be hosted by Bob Custard and Dr. Sandra Whitehead. NEHA Membership Director Jonna Ashley will again offer an Affiliate Leadership Workshop intended to provide our state partners with ideas around best practices for small associations. New this year will be our Health Impact Assessment 101 Workshop. These review courses, trainings, and workshops are being offered to ensure that you and your local programs receive technical assistance and training to increase the likelihood of your success.

Bridges, Bonds, and Benefits. Your NEHA staff has collectively spent the last year securing the best talent, national influencers, and thought leaders for our 2018 AEC. We believe in bridges to other health professions. We value creating bonds with the private sector. The benefits of these values and beliefs will pay dividends well into the future. This conference feels right. We hope you are gratified and astonished.

Employers increasingly require a professional credential to verify that you are qualified and trained to perform your job duties. Credentials improve the visibility and credibility of our profession, and they can result in raises or promotions for the holder. For 80 years, NEHA has fostered dedication, competency, and capability through professional credentialing. We provide a path to those who want to challenge themselves, and keep learning every day. Earning a credential is a personal commitment to excellence and achievement.

Learn more at neha.org/professional-development/credentials.

A credential today can improve all your tomorrows.
When information flows seamlessly throughout a community, managing critical processes for health inspections becomes that much easier. The entire community benefits when everyone is headed in the same direction.

DHD software’s leading SaaS solution streamlines environmental health permit and inspection processes.

You’ll flip for our new wave thinking at tylertech.com/connectedcommunities.
Always do right. This will gratify some people and astonish the rest.” Mark Twain had a way with words. Our 2018 Annual Educational Conference (AEC) & Exhibition is a few weeks away, and we, too, feel we have done this one right.

First, the city. In keeping with my commitment to provide a family friendly conference environment, this year we will be in beautiful Anaheim, California. Disney California Adventure Park and Disneyland Park are just one and two miles, respectively, from our host hotel. Mexico is a 90-minute drive away. Newport Beach, Bolsa Chica State Beach, and Laguna Beach are nearby. The site of our annual UL Event, Anaheim’s Angel Stadium, is a few blocks away.

We also continue our commitment to affordable food and beverage options within walking distance from the host hotel, as well as within the host hotel. That is, when you need it. On Monday, June 25, the Exhibition Grand Opening & Party will include finger food, and there will be coffee breaks provided to attendees throughout the week. On Wednesday, June 27, the National Restaurant Association is sponsoring the Breakfast & Town Hall Assembly. Finally, we are hosting a special social event—Good Vibrations! Reception—that will feature southern California fare on the evening of Wednesday, June 27. These events and meals are included in all full conference registrations.

While food and location are important, our Chief Learning Officer Kristie Denbrock has canvassed the country to produce a superb educational program. In keeping with our conference theme—Bridges, Bonds, and Benefits—we have enticed some of the biggest names in the profession to share their insight and wisdom with you. The opening Keynote Address will feature none other than Frank Yiannas, vice president of food safety and health for Walmart. He will describe private sector efforts to bridge to those of us in the public sector. Yiannas is reportedly a dynamic speaker, and we are pleased that he plans to spend time bonding with our Business & Industry Affiliate.

The Association of State and Territorial Health Officials will convene their annual meeting of state environmental health directors at our AEC for the first time. They will host a panel discussion of state environmental health directors during our Opening Session and have invited Yiannas to join them. The panel will discuss the linkages between federal, state, and local practitioners, as well as how those parties work in concert with the private sector.

We are thrilled and honored to have Rear Admiral Stephen Redd, MD, kick off our educational sessions on the second day of the 2018 AEC. Dr. Redd is the director of the Centers for Disease Control and Prevention’s Office of Public Health Preparedness and Response. We have met with Dr. Redd several times over recent years to advance conversations around public health emergency preparedness capabilities and the need to create a separate capability for environmental health. I’m personally looking forward to his presentation.

The educational sessions promise to provide you with a menu of fascinating subject matter content. For starters, we received almost 400 abstracts this year, which I understand is a record. We have accepted 280 of those abstracts, which is a lot of content to pack into three days. We will be recording select high-demand sessions for those of you who may be concerned about the difficult decision of which session to attend because of scheduling conflicts.

The 2018 AEC Closing Session will be hosted by our friends at the Association of Public Health Laboratories (APHL). As we migrate into an era where big data and informatics are becoming increasingly central to our work, we are delighted that APHL’s Executive Director Scott Becker will be present to help us sift through the roles and responsibilities of public health laboratories, their relationship with the environmental health profession, and how we can better collaborate in a madly evolving profession. The title of this session is Opening the Big Black Box: Partnering With Public Health Laboratories to...
Urban Planning and Public Health: A Critical Partnership

By: Michael R. Greenberg, PhD and Dona Schneider, PhD, MPH

Urban environments have enormous impacts on the health of populations, presenting public health and planning professionals with real challenges to create the healthiest environment possible. This book prepares public health professionals to participate effectively in the planning process, building positive health outcomes into planning schemes. This book provides real guidance on how to solve these issues, has case studies that show how effective these policies can be.

Order today at aphabookstore.org

For classroom use contact bookstoreservices@apha.org

Innovation HealthSpace

CS Pro

A platform that combines inspections, reporting, management and data through our three products.

HealthSpace Cloud

A fully-customizable cloud-based portal for managing applications, licenses, permits, inspections and other data.

HealthSpace Data

An environmental health reporting, analytics and monitoring platform. HealthSpace Data is a robust platform that turns information overload into useful, actionable insights.

HealthSpace Touch

Conduct paperless field inspections from any place, at any time with our intuitive suite of native apps for iOS, Android and Windows.

Visit us at Booth 200 during the upcoming NEHA AEC June 25 and 26, 2018 at the Anaheim Marriott, Anaheim, CA

HealthSpace.com
Introduction
China has named numerous Environmental Model Cities as exemplary national models of sustainability (Liu, L., 2008; Ministry of Ecology and Environment, 2015). To improve conditions in the urban core areas, these cities have been relocating polluting industries to nearby suburbs and rural villages, creating new environmental health problems (Liu, L., 2012, 2013). These problems are the result of many interrelated social-economic-political factors (Gee & Payne-Sturges, 2004; Rubin, 2015; Woolf & Braveman, 2011). These problems, however, are often difficult to determine because many environmental health hazards are hidden. Furthermore, it is extremely challenging to demonstrate a causal link between environmental contamination and human health problems (Tilt, 2013).

Despite this difficulty, numerous attempts have been made to link industrial pollution to cancer (Fischer et al., 2015; Gallagher, Webster, Aschengrau, & Vieira, 2010; Liao et al., 2015; López-Abente, García-Pérez, Fernández-Navarro, Boldo, & Ramis, 2012; Wheeler, Kothencz, & Pollard, 2013). Chinese publications tend to attribute the rising cancer rates to population aging, improved cancer detection technology, and unhealthy lifestyle choices such as smoking. They often do not pay adequate attention to environmental pollution (Xu, Zhang, Lin, Li, & Zhang, 2008; Zhou & Lin, 2010). Nevertheless, Yang and coauthor (2014) were able to map out an association between industrial water pollution and cancer occurrences in the Huai River Basin of China. Further research in similar areas has been difficult to conduct due to unavailability of data (Holdaway, 2013).

Meanwhile, recent studies have emphasized the growing need to analyze the unequal health impacts of pollution and geostatistical techniques to environmental health research (Beyer, Comstock, Seagren, & Rushton, 2011; Chakraborty, 2012; Luginaah et al., 2012; Metintas, Metintas, Ak, & Kalyoncu, 2012). One article argued for “a spatial turn in health research” along with increasing application of geographic science and technology (Richardson et al., 2013).

Furthermore, geographic differences in cancer mortalities have been found to be related to geographic distances (Sokal, Oden, Rosenberg, & DiGiovanni, 1997). Geospatial data on health and social environments have been used to study health disparities (Richardson et al., 2013). Additionally, researchers have found spatial-temporal cluster analyses to be useful in detecting cancer clusters (Chakraborty, 2012; Luginaah et al., 2012; Rabinowitz et al., 2015; Ren et al., 2016; Riva, Curtis, Gauvin, & Fagg, 2009; Todd & Valleron, 2015; Vieira, Webster, Weinberg, & Aschengrau, 2008; Wheeler, Ward, & Waller, 2012).

Varied findings have been reported in terms of rural-urban health inequalities (Gartner, Farewell, Dunstan, & Gordon, 2008; Gartner, Farewell, Roach, & Dunstan, 2011; McLaugherty & Wang, 2009; Singh & Siahpush, 2014). An environmental justice perspective has been increasingly applied when looking at environmental health problems (Liu, L., 2013; Sultana, 2012; Viel, Hagi, Upegui, & Laurian, 2011).
Dalian City is located in Northeast China and includes an urban core area, suburbs, and outer cities/counties. This study focuses on Jinzhou, a suburban district north of urban Dalian. Jinzhou had a total population of 756,969 in 24 townships by the end of 2013 (see supplemental figure at www.neha.org/jeh/supplemental).

Before 1980, Jinzhou was a traditional agricultural county, with little industrial pollution. As such, it was among China’s first accredited Demonstration EcoCommunities in the early 1990s (Ministry of Environmental Protection, 2002). It was well known for its eco-agriculture, namely fruits and vegetables. Jinzhou has received most of the factories relocated from urban Dalian, as well as heavy investment from Dalian and international sources in expanding existing factories and building new ones.

Among the factories, Lynchem Chemical Plant was relocated from Ganjingzi District of urban Dalian to Jinzhou in the 1990s as a farm chemical plant. It continued to expand in size and product types. In 2009, one of its facilities exploded, killing 2 workers and injuring 10. The explosion shattered window glass in nearby villages. About 67 hectares of rice field nearby were poisoned by the explosion and, since then, has remained fallow. Residents had long complained about health problems and believed that the plant was the culprit.

Relocation includes the relocation of facilities as well as the investments in facilities. The relocation started in the 1990s. The movement of facilities was completed in about a decade or so, but the investment relocation continues. The effects of pollution on health and death are usually delayed. Thus, it is appropriate to study health effects a decade or more after relocation started.

This population-based study used the 2006–2013 mortality and population data in the mortality registry databases of the Jinzhou Center for Disease Control and Prevention (unpublished data). Death refers to deaths from all causes (ICD-10). Cancer means all cancers (C00–C97).

Spatial data included a 1:300,000 digital map of the 24 townships of Jinzhou (unpublished data). As a result of the lack of age- and sex-specific population data, we were unable to calculate the age-standardized mortality rates. Instead, special attention was given to the population aging variable using the percentage of population age 60 years and older. Other variables included birth rate, net income per capita, gross agricultural income per capita, and gross rural industrial income per capita. These were the only variables for which data were available.

ArcGIS10 software was used to build a GIS database of the study area, including geographic location, mortality, and population. Spatial autocorrelation analyses were conducted to detect global and local spatial autocorrelation coefficients, Moran’s I, using GeoDa0.95i software. The space-time hot spot analyses were conducted using GeoDa0.95i and SaTScan 9.3, following the Bernoulli model with a scan of 25% of the population.

Distance between the Dengshahe River, the factories, and the geometric center of the townships was calculated using ArcGIS10. The 24 townships were divided into urban and rural areas based on the Jinzhou administrative division updated by the 12th Five-Year Plan on Economic and Social Development of the People’s Republic of China (Jinzhou New District Government, 2011). Further statistical analyses examined differences between rural and urban townships and their associations with social economic variables using SPSS software.

TABLE 1

<table>
<thead>
<tr>
<th>SO2 Emissions in Ganjingzi</th>
<th>2006</th>
<th>2010</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SO2 discharge (1,000 tons)</td>
<td>493</td>
<td>162</td>
<td>-67</td>
</tr>
<tr>
<td>Air concentrations of SO2 (mg/m³)</td>
<td>0.072</td>
<td>0.040</td>
<td>-44</td>
</tr>
<tr>
<td>All Dalian manufacturing SO2 discharge (%)</td>
<td>55</td>
<td>21</td>
<td>-62</td>
</tr>
</tbody>
</table>

Source: Calculated by authors based on Li, 2011.

TABLE 2

<table>
<thead>
<tr>
<th>Year</th>
<th>Urban Dalian</th>
<th>Jinzhou</th>
<th>Jinzhou/Urban Dalian Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>195.97</td>
<td>189.91</td>
<td>0.9691</td>
</tr>
<tr>
<td>2007</td>
<td>205.51</td>
<td>205.35</td>
<td>0.9992</td>
</tr>
<tr>
<td>2008</td>
<td>209.03</td>
<td>214.54</td>
<td>1.0264</td>
</tr>
<tr>
<td>2009</td>
<td>208.19</td>
<td>224.60</td>
<td>1.0788</td>
</tr>
</tbody>
</table>

Source: Dalian urban data (Zhou & Lin, 2010); Jinzhou data (Hu & Liu, 2010).
Results and Discussion

Disparities in Environmental Health Risks and Benefits Between Urban and Suburban Dalian

The urban parts of Dalian have benefited from the relocation of polluting industries since the early 1990s. Dalian was named one of China's earliest Environmental Model Cities in 1997. In 2001, it was elected to the prestigious ranks of the United Nations Environment Programme (UNEP) Global 500 Roll of Honour for outstanding contributions to the protection of the environment (UNEP, 2001).

UNEP stated that "one outstanding achievement was the relocation of 98 pollution-emitting factories from the City to the suburbs." The 2004–2011 reports from Dalian City Environmental Protection Bureau detailed improvements in environmental condition in terms of air quality, river and coastal water quality, and pollutant discharges in urban Dalian (Dalian City Environmental Protection Bureau, 2013a, 2013b). Ganjingzi District was the traditional manufacturing zone of urban Dalian (see supplemental figure at www.neha.org/jeh/supplemental). Relocating its polluting industries benefited urban Dalian's environment (Table 1).

Compared with urban Dalian, Dalian's suburbs where the polluting industries were relocated to suffered severe environmental degradation. Along with worsening pollution, Jinzhou lost its blue skies and clean coastal and inland waters. Smog has frequently been reported in Dalian since 10 air quality index (AQI) monitors were installed in 2012. The monitors in Jinzhou, though installed in less polluted spots, display the AQI including PM$_{2.5}$ levels that are often the highest in the Dalian region. In spring 2013, Jinzhou's PM$_{2.5}$ exceeded 500 µg/m3, which was over 7 times that of China's acceptable safe limit of 75 µg/m3 (Liu, Z.Y., 2013), and 20 times that of the World Health Organization's guideline for maximum healthy exposure of 25 µg/m3.

In late December 2014, Jinzhou's PM$_{2.5}$ exceeded 500 µg/m3 for days, reaching 609 µg/m3 at times, compared with 381 µg/m3 in urban Dalian (Zhai & Li, 2014). Dalian City Environmental Protection Bureau found that industrial pollution was the primary cause of the smog, followed by automobile exhaust.

<table>
<thead>
<tr>
<th>Year</th>
<th>Death Rate (All Persons)</th>
<th>Death Rate (Male)</th>
<th>Death Rate (Female)</th>
<th>CMR (Total)</th>
<th>CMR (Male)</th>
<th>CMR (Female)</th>
<th>PDC (All Persons)</th>
<th>PDC (Male)</th>
<th>PDC (Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>620</td>
<td>720</td>
<td>523</td>
<td>171</td>
<td>216</td>
<td>128</td>
<td>28</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>2007</td>
<td>621</td>
<td>701</td>
<td>541</td>
<td>183</td>
<td>237</td>
<td>131</td>
<td>30</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td>2008</td>
<td>644</td>
<td>736</td>
<td>554</td>
<td>183</td>
<td>236</td>
<td>132</td>
<td>28</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>2009</td>
<td>651</td>
<td>755</td>
<td>550</td>
<td>189</td>
<td>233</td>
<td>146</td>
<td>29</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>2010</td>
<td>642</td>
<td>729</td>
<td>566</td>
<td>186</td>
<td>236</td>
<td>138</td>
<td>29</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>2011</td>
<td>636</td>
<td>735</td>
<td>539</td>
<td>191</td>
<td>251</td>
<td>132</td>
<td>30</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td>2012</td>
<td>675</td>
<td>766</td>
<td>587</td>
<td>191</td>
<td>241</td>
<td>141</td>
<td>28</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>2013</td>
<td>664</td>
<td>761</td>
<td>570</td>
<td>190</td>
<td>252</td>
<td>130</td>
<td>29</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Increase 2006–2013</td>
<td>7.19</td>
<td>5.68</td>
<td>8.92</td>
<td>11.28</td>
<td>16.74</td>
<td>1.75</td>
<td>3.81</td>
<td>10.47</td>
<td>-6.58</td>
</tr>
</tbody>
</table>

Source: Calculated from Jinzhou Center for Disease Control and Prevention (unpublished data).

<table>
<thead>
<tr>
<th>Year</th>
<th>Global Autocorrelation ($p < .05$)</th>
<th>Local Autocorrelation ($p < .05$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moran's I</td>
<td>z-Score</td>
</tr>
<tr>
<td>2006</td>
<td>0.3795</td>
<td>2.6604</td>
</tr>
<tr>
<td>2007</td>
<td>0.5725</td>
<td>3.8708</td>
</tr>
<tr>
<td>2008</td>
<td>0.4750</td>
<td>3.5714</td>
</tr>
<tr>
<td>2009</td>
<td>0.5342</td>
<td>4.0212</td>
</tr>
<tr>
<td>2010</td>
<td>0.2304</td>
<td>1.8168</td>
</tr>
<tr>
<td>2011</td>
<td>0.0683</td>
<td>0.7763</td>
</tr>
<tr>
<td>2012</td>
<td>0.4363</td>
<td>3.2340</td>
</tr>
<tr>
<td>2013</td>
<td>0.3039</td>
<td>2.3342</td>
</tr>
<tr>
<td>Mean</td>
<td>0.4796</td>
<td>3.6015</td>
</tr>
<tr>
<td>Dengshahe River</td>
<td>-0.5155</td>
<td>-4.0283</td>
</tr>
<tr>
<td>Lynchem Chemical Plant</td>
<td>-0.4935</td>
<td>-4.0204</td>
</tr>
</tbody>
</table>

TABLE 4
Global and Local Autocorrelation on Cancer Mortality Rates in Jinzhou, Dalian, 2006–2013
The degrading environmental condition is believed to have caused health problems. Even with limited data, it was still possible to detect changing health conditions between urban Dalian and Jinzhou. Jinzhou had lower CMR than urban Dalian in 2006, and the difference became smaller in 2007 (Table 2). By 2009, Jinzhou's CMR was almost 8% higher than that of urban Dalian. Research suggests that the trend continued and the difference became larger (statistical data for post-2009 urban Dalian were unavailable for further comparisons).

The mortality registry databases revealed worsening health trends despite fluctuations in rates from 2006–2013 in the 24 townships (Table 3). The death rate increased more than 7% and CMR rose by 11.28% for all persons, reaching 16.74% higher for men. This finding indicates that CMR increased drastically in Jinzhou in recent years. As a result, Jinzhou's PDC for all persons also increased from 2006–2013.

Spatial and Temporal Clusters and Hot Spots Linking to Pollution Sources
Results of space-time cluster analyses indicated that global and local autocorrelation Moran’s I was statistically significant for the 2006–2013 means and for all individual years except 2011 (Table 4). Local autocorrelation resulted in a high-high clustering, with two neighboring townships, Dengshahe and Dalijia, having high CMRs. A negative correlation existed between the CMRs and distances to the Dengshahe River and the Lynchem Chemical Plant, which were two main pollution sources. An association was determined between cancer mortality and relocated industrial pollution.

The space-time hot spot analyses revealed one tier-one and one tier-two clusters (Table 5; see supplemental figure at www.neha.org/jeh/supplemental). Sources of pollution for the tier-two cluster were unclear. Large-scale garbage dumps and landfill sites with solid waste from urban Dalian and Jinzhou since the 1980s, however, have caused severe air and water pollution (see supplemental figure at www.neha.org/jeh/supplemental).

Dalian has been engaged in one of the largest reclamation projects in China, particularly in Jinzhou (Nanfang Weekend, 2011). Highways, apartment buildings, factories, and commercial areas have been constructed on the landfill sites. This development benefited urban residents but caused pollution that degraded the ecosystem of the whole western coast of Jinzhou. As a result, aquaculture has all but disappeared. Another possible pollution source likely is the large quantity of pesticides and herbicides that the farmers use increasingly on their fruit trees. It is important to note that both tier-one and tier-two clusters are centered on rural townships, which is an indication that rural areas suffered more severe health problems than urban areas.

TABLE 5

<table>
<thead>
<tr>
<th>Cluster Tier</th>
<th>Cluster Year</th>
<th>Cluster Center</th>
<th>Radius (km)</th>
<th># of Communities</th>
<th>LLR</th>
<th>RR</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2009–2012</td>
<td>122.06</td>
<td>Dalijia</td>
<td>17.36</td>
<td>8</td>
<td>75.62</td>
<td><.001</td>
</tr>
<tr>
<td>2</td>
<td>2010–2013</td>
<td>121.69</td>
<td>Daweijia</td>
<td>11.58</td>
<td>6</td>
<td>24.20</td>
<td><.001</td>
</tr>
</tbody>
</table>

LLR = logarithmic likelihood ratio; RR = relative risk.

TABLE 6

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (all persons)</td>
<td>15,565</td>
<td>91,210</td>
<td>29,547</td>
<td>14,017</td>
</tr>
<tr>
<td>Population (male)</td>
<td>7,456</td>
<td>43,312</td>
<td>14,612</td>
<td>6,756</td>
</tr>
<tr>
<td>Population (female)</td>
<td>7,331</td>
<td>47,898</td>
<td>14,935</td>
<td>7,267</td>
</tr>
<tr>
<td>Birth rate (per 1,000)</td>
<td>3.29</td>
<td>11.53</td>
<td>6.45</td>
<td>1.679</td>
</tr>
<tr>
<td>>59 years (%)</td>
<td>5.02</td>
<td>25.83</td>
<td>19.92</td>
<td>4.933</td>
</tr>
<tr>
<td>Male:female ratio</td>
<td>0.88</td>
<td>1.04</td>
<td>0.97</td>
<td>0.028</td>
</tr>
<tr>
<td>Net rural income/capita (yuan)</td>
<td>6,174</td>
<td>29,851</td>
<td>16,356</td>
<td>5,282</td>
</tr>
<tr>
<td>Gross agricultural income/capita (yuan)</td>
<td>1,344</td>
<td>1,184,259</td>
<td>216,929</td>
<td>149,559</td>
</tr>
<tr>
<td>Gross rural industrial income/capita (yuan)</td>
<td>10,215</td>
<td>40,804</td>
<td>20,869</td>
<td>7,771</td>
</tr>
<tr>
<td>Distance to river (km)</td>
<td>1.6</td>
<td>34.9</td>
<td>20.8</td>
<td>11.2</td>
</tr>
<tr>
<td>Distance to Lynchem Chemical Plant (km)</td>
<td>2.9</td>
<td>37.3</td>
<td>23.6</td>
<td>11.0</td>
</tr>
<tr>
<td>Death rate (all persons/1,000)</td>
<td>1.67</td>
<td>12.78</td>
<td>7.17</td>
<td>2.18</td>
</tr>
<tr>
<td>Death rate (male/1,000)</td>
<td>1.99</td>
<td>14.55</td>
<td>8.16</td>
<td>2.42</td>
</tr>
<tr>
<td>Death rate (female/1,000)</td>
<td>1.37</td>
<td>12.24</td>
<td>6.19</td>
<td>2.09</td>
</tr>
<tr>
<td>CMR (all persons/100,000)</td>
<td>48.01</td>
<td>299.55</td>
<td>184.08</td>
<td>47.13</td>
</tr>
<tr>
<td>CMR (male/100,000)</td>
<td>67.61</td>
<td>457.44</td>
<td>261.73</td>
<td>71.87</td>
</tr>
<tr>
<td>CMR (female/100,000)</td>
<td>18.46</td>
<td>195.02</td>
<td>107.72</td>
<td>39.41</td>
</tr>
<tr>
<td>PDC (all persons, %)</td>
<td>13.87</td>
<td>43.65</td>
<td>26.63</td>
<td>5.37</td>
</tr>
<tr>
<td>PDC (male, %)</td>
<td>11.39</td>
<td>54.67</td>
<td>33.02</td>
<td>6.92</td>
</tr>
<tr>
<td>PDC (female, %)</td>
<td>2.33</td>
<td>36.84</td>
<td>18.24</td>
<td>5.85</td>
</tr>
</tbody>
</table>

CMR = cancer mortality rate; PDC = percentage of death from cancer.
Associations of Cancer and Death With Geographic, Social, and Economic Factors

Table 6 shows large variations among the 24 townships in terms of demographic, economic, and mortality variables. We found mortality variables to be correlated to birth rate, sex ratio, and agricultural income per capita (Table 7). In addition, population aging and geometric distances have the highest correlation coefficients. This finding confirms a link between the pollution sources and health indicators as suggested in the space-time cluster analyses.

To further understand the rural-urban disparities, Table 8 compares the rural and urban townships for their mortality variables. Death rate and CMR were higher in rural than urban areas. The mean CMR was over 50% higher in rural areas than in urban areas, and was 60% higher for the male population. On the other hand, PDC was higher in urban areas than in rural areas, with the rural-to-urban ratio at 0.84:1 for the average of 2006–2013.

Jinzhou’s rural-urban disparities in mortality are startling in the Chinese context. The death rate in rural China for the same period was only slightly higher than that in urban China with a ratio of 1:1.02. CMR was actually lower in rural China than urban China with a ratio of 1:0.9. Jinzhou-to-China ratios indicate that Jinzhou’s rural-to-urban ratio was higher than the Chinese average by 85% for overall death rate, 100% for male death rate, 74% for overall CMR, and 81% for female CMR (Table 8). This
finding means that environmental health was worse in suburban Dalian than in urban Dalian, and in China as a whole. Pearson correlation results suggest that aging is the variable most linked to mortality in urban townships (Table 9).

In rural areas, it was surprising that agricultural income per capita was positively linked to death rates. This finding might suggest that the higher the income, the higher the death rates, which challenges the notion that rural health has improved along with increased income. It supports the notion that the overuse of pesticides and herbicides might have helped farmers income levels, but at the cost of their health. On the other hand, agricultural income was not linked to CMR. It was also surprising that in rural townships, aging was not linked to death and cancer mortality, except for male death rates.

Further analyses suggest that the trends of death rates and CMR diverge as death rates increase steeply while CMR decelerate, as well as the percentage of population ages 60 years and older increases (Figure 1). The divergence was more visible in urban areas than in rural areas (Figure 1). This finding was possibly because aging in urban areas was relatively low in level and large in range from 5.02–23.3%, as compared with 16.81–26.8% in rural townships. This finding helps us to understand why aging did not correlate with death rate and CMR variations in the rural areas.

Implications to Environmental Health Research and Policies

Our findings support the literature that urban environmental health issues have a strong spatial dimension. Studying this dimension helps reveal possible factors affecting environmental health, and could contribute to the development of appropriate policy measures. It also highlights the importance of applying spatial-temporal cluster approaches to the study of urban environmental health, particularly when distance to polluting sources is a possible factor in explaining variation in environmental health.

These findings reveal environmental injustice during environmental and economic development. The environmental health risks and benefits are unequally distributed between urban and suburban Dalian, as well as between urban and rural Jinzhou, meaning that urban Dalian benefits at the cost of the suburbs. Within Jinzhou, the risks have disproportionately burdened rural townships, which is especially alarming when we consider the fact that rural areas tend to have lower CMRs than urban areas in China nationwide. This finding contributes to the debate over rural-urban environmental health disparities.

Our findings suggest that the relationship between aging and CMR is not linear. Research indicates that CMR might decelerate or even decline among the very old (de Magalhães, 2013). CMR might also first accelerate and then decelerate with the increasing percentage of aging population as compared with longer life expectancy. Such an outcome has not been reported before and the causes of the outcome are unknown. It is important for health policy makers and practitioners to consider effective measures to deal with the situation, and for health researchers to study the causes of such consequences.

Conclusions

The study demonstrates that urban Dalian achieves environmental health benefits at the cost of suburban and rural areas, which increases the social injustice. Research can benefit from taking a justice perspective in environmental health issues. The findings are useful to urban land use planning and development in China, as well as in other countries.

A similar urban development approach has been used in many other Chinese cities: Shenyang, Changchun, Beijing, Nanjing, Shanghai, and Guangzhou. This article provides a basis for examining how environmental health in these cities has evolved. Environmental Model Cities should be required to refrain from producing a negative impact on environmental health in other areas. Assessment should cover the entire city region (urban, suburban, and rural areas) rather than only urban centers.

The clustering of high CMR townships underscores environmental health disparities that might be overlooked if we pay attention only to the average rates in Dalian or Jinzhou. A link between CMR and polluting sources points to the direction of future work to control pollution in order to improve environmental health. It is interesting that aging might not be linked to CMR when only rural townships are under consideration, because they all have high levels of aging. It is important for health policy makers and practitioners to consider effective measures to deal with this situation, and for health researchers to find out the causes of the deceleration or decline in CMR.

| TABLE 9 |
| Pearson Correlation Results for Rural and Urban Variables, Jinzhou, Dalian, 2006–2013 |

<table>
<thead>
<tr>
<th></th>
<th>Aging</th>
<th>Agricultural Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death rate (all persons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.913*</td>
<td>.249</td>
</tr>
<tr>
<td>Rural</td>
<td>.348</td>
<td>.444*</td>
</tr>
<tr>
<td>Death rate (male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.904*</td>
<td>.180</td>
</tr>
<tr>
<td>Rural</td>
<td>.485*</td>
<td>.344*</td>
</tr>
<tr>
<td>Death rate (female)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.846*</td>
<td>.285*</td>
</tr>
<tr>
<td>Rural</td>
<td>.151</td>
<td>.465*</td>
</tr>
<tr>
<td>CMR (all persons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.799*</td>
<td>.177</td>
</tr>
<tr>
<td>Rural</td>
<td>-.005</td>
<td>.176</td>
</tr>
<tr>
<td>CMR (male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.769*</td>
<td>.168</td>
</tr>
<tr>
<td>Rural</td>
<td>.027</td>
<td>.196</td>
</tr>
<tr>
<td>CMR (female)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>.604*</td>
<td>.110</td>
</tr>
<tr>
<td>Rural</td>
<td>-.058</td>
<td>.069</td>
</tr>
</tbody>
</table>

CMR = cancer mortality rate.
*Significant at the .01 level (2-tailed).
*Significant at the .05 level (2-tailed).
While we have focused on a few variables, it is necessary to note that many other factors affect death and cancer death, such as smoking and diet. Rural residents tend to be affected more by pesticides and herbicides and consume more tobacco than urban people who, on the other hand, tend to be affected more from vehicle pollution. Our understanding is that these factors should be considered when data are available.

Currently, there are no known reports on the effects of these factors in Jinzhou or Dalian. Jinzhou is small in area, so many factors are similar among the townships. Hopefully this article will encourage further research that could include consideration of additional factors. It is also important to note that industrial pollution can cause many kinds of cancers, in addition to general health problems. Some types of cancer, such as lung cancer and stomach cancer, are more directly linked to pollution than others. Further research should examine these types of cancer specifically.

Acknowledgements: This research was partly funded by the National Geographic Society (Grant #8980-1); University of Central Missouri Professional Enhancement Committee and School of Environmental, Physical, and Applied Sciences; Humanity and Social Science R&p Foundation of Ministry of Education of China (Grant #17YJAZH125). The authors wish to thank the Jinzhou New District Center for Disease Control and Prevention, Dalian, China, for assistance with data collection; Jianqi Guan and Weiran Yang for assistance with Jinzhou data extraction; and Tiffany Liu for copy editing.

Corresponding Author: Lee Liu, School of Environmental, Physical, and Applied Sciences, University of Central Missouri, Humphreys 225, Warrensburg, MO 64093. E-mail: laliu@ucmo.edu.

References on page E8.
References

References

