Environmental assessments (EAs) help ensure outbreaks are fully understood and addressed to protect health (Brown et al., 2017). Key information about the outbreak—how and why it happened and what interventions should be implemented—is not always obvious and can be challenging to determine. Conducting EAs during an outbreak investigation helps determine control measures to prevent future outbreaks.

Collaborative Efforts Guide Environmental Assessments

Collaboration between environmental, epidemiological, and laboratory investigators helps guide an outbreak response. During an investigation, epidemiologists focus on who got sick (host) and when and where the outbreak happened. Laboratory technicians analyze clinical specimens to determine what made people sick (agent). Environmental health specialists collect environmental samples and data to see how the agent was able to infect the host.

Sharing outbreak data can help determine the system failures (contributing factors) and root causes (environmental antecedents) of an outbreak. These data also help investigators recommend actions to stop the outbreak and prevent another one.

Environmental Assessments Help Investigators Learn How and Why an Outbreak Occurs

An EA helps investigators describe where the outbreak happened (outbreak environment). Investigators study the outbreak environment, like a system made up of many parts. They examine how parts of the system—inputs, processes, variables, outputs, and outcomes—influence one another (Figure 1) to determine how the outbreak occurred (contributing factors). They can then examine which variables, such as processes, people, economics, and equipment, are responsible for the outbreak (environmental antecedents).

For example, when recurring outbreaks of acute gastroenteritis occurred on two cruise ships in 2019 (Rispens et al., 2019), investigators suspected norovirus as the agent based on the symptoms experienced and duration of illness. They collected epidemiological data and based on prior knowledge, they focused on frozen berries and fruits most likely consumed in smoothies. The investigators sent suspected frozen fruit items to the laboratory for testing and norovirus was found in the samples. Investigators now knew exactly what was causing the illness; however, they did not know how and why it got into the environment.

During the EA, investigators created a flowchart to map out how the fruit items were prepared for smoothies, which helped determine whether any steps in food preparation on the ship contributed to the fruits being contaminated. The flowchart did not reveal any issues on the ship, so investigators moved their focus to the supplier. The investigators were able to trace the frozen berries back to a single supplier and determined that contamination most likely occurred from this source. As a result, the World Health Organization issued a recall notice for those berries.

Without a traceback investigation to confirm a supplier-based outbreak due to contaminated food, people would have likely continued to get sick.
Data Collected During Environmental Assessments Can Help Inform Prevention Efforts
Illness outbreaks are common in food settings. Data from the Centers for Disease Control and Prevention (CDC) show that restaurants with certified kitchen managers had lower rates of foodborne norovirus outbreaks compared to those without certified kitchen managers (Hoover et al., 2020). In addition, EA data from 404 outbreaks showed key gaps in retail food safety practices and outbreak investigations, particularly around sick workers who were noted to be a common source of food contamination and outbreaks (Lipcsei et al., 2019).

EAs can also apply to other settings, like outbreaks related to water. For example, outbreak investigations of Legionnaires’ disease require an EA to identify potential sources of exposure (Garrison et al., 2016) and such assessments have shown that water management programs are an effective control strategy for preventing Legionella outbreaks (Clopper, Kunz, Salandy, et al., 2021).

Environmental Assessments Are Different From Inspections and Require Different Training
Routine inspections look at regulations, operational violations, and sanitary conditions during normal operations when there is no outbreak. EAs look for clues to understand how factors in the environment led to an outbreak. Since outbreaks can be infrequent in a community, EAs might not be common for health department staff. Everyone needs to know their roles during an outbreak investigation. Training staff before the emergency means they will be ready when an outbreak occurs.

Centers for Disease Control and Prevention Tools to Help Conduct Environmental Assessments
CDC's National Environmental Assessment Reporting System helps food safety programs capture EA data from investigations of foodborne illness. Programs can join for free and use their data to help identify environmental causes of outbreaks and take follow-up actions to reduce or prevent future outbreaks. CDC's Environmental Assessment Training Series provides training on the role of EAs in the context of outbreak investigations and the food safety system.

The Legionella Environmental Assessment Form helps investigators assess a facility’s water system, determine whether to conduct Legionella environmental sampling, and helps investigators design sampling plans.
Environmental Health Practitioners Fill Key Roles in Outbreak Investigations

• Assess a specific event that occurred in the past using critical thinking.
• Focus on how and why a pathogen got into the outbreak environment and spread.
• Collect data through interviews, observations, record reviews, and environmental sampling.
• Use data from their assessment, laboratory, and epidemiology findings to inform what should change to stop and prevent future outbreaks.
• Identify contributing factors and environmental antecedents to the outbreak.
• Implement interventions and make recommendations to help stop and prevent future outbreaks.

What Is the Difference Between Contributing Factors and Environmental Antecedents?

• Contributing factors: How an outbreak happened—behaviors, practices, and environmental conditions that led to the agent getting into, surviving, or growing in the environment. For example, an E. coli outbreak happened because the food worker did not cook a burger long enough or to a hot enough temperature to kill the E. coli in the beef.

• Environmental antecedents: Why an outbreak happened—conditions that led to the contributing factor(s). For example, it was lunch rush and the worker was in a hurry and did not check to make sure the burger was cooked to proper temperature. Ultimately, this antecedent might be due to a lack of food safety culture or a lack of active managerial control in the restaurant.

Environmental Assessment Data Improve Public Health Outcomes

Outbreak investigations can be complex and difficult to solve. The goal of every investigation is to learn how and why the outbreak is occurring and fix the problem to help prevent more illness. Data collected from outbreaks can inform the most common contributing factors and environmental antecedents. What we learn from EA data can help identify risk factors and stop outbreaks before they occur. Ultimately, this evidence-based information strengthens the science behind the root causes of an outbreak to inform and influence public health practices and policies.

Corresponding Author: Beth Wittry, Environmental Health Officer, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341. Email: xks5@cdc.gov.

References

The following colleges and universities offer accredited environmental health programs for undergraduate and graduate degrees (where indicated). For more information, please contact the schools directly or visit the National Environmental Health Science and Protection Accreditation Council website at www.nehspac.org.

PROGRAMS ACCREDITED BY THE NATIONAL ENVIRONMENTAL HEALTH SCIENCE AND PROTECTION ACCREDITATION COUNCIL

Baylor University
Waco, TX
Bryan W. Brooks, MS, PhD
bryan_brooks@baylor.edu

Benedict College
Columbia, SC
Milton A. Morris, MPH, PhD
morrism@benedict.edu

Boise State University
Boise, ID
Kimberly Rauscher, MA, ScD
kimberlyrauscher@boisestate.edu

California State University at Northridge†
Northridge, CA
Nola Kennedy, PhD
nola.kennedy@csun.edu

California State University at San Bernardino
San Bernardino, CA
Lail S. Milam, PhD
lmiam@csusb.edu

Central Michigan University
Mount Pleasant, MI
Rebecca Uzarski, PhD
uzars2rl@cmich.edu

Colorado State University
Fort Collins, CO
Joshua Schaeffer, PhD, CIH
joshua.schaeffer@colostate.edu

East Carolina University†
Greenville, NC
William Hill (undergraduate)
hillw@ecu.edu
Stephanie Richards, PhD (graduate)
richards@ecu.edu

East Central University
Ada, OK
Michael Bay, PhD
mbay@ecok.edu

East Tennessee State University
Johnson City, TN
Kurt Maier, MS, PhD
maier@etsu.edu

Eastern Kentucky University†
Richmond, KY
Vonita Grabiele, MPH, RS (undergraduate)
vonita.grabiele@eku.edu
Clint Pinion, Jr., MA, MPH, DrPH, CIT, RS
clint.pinion@eku.edu

Fort Valley State University†
Fort Valley, GA
Oreta Samples, PhD
sampleso@fvsu.edu

Illinois State University
Normal, IL
Guang Jin, PhD, PE
gjin@ilstu.edu

Indiana University–Purdue University Indianapolis
Indianapolis, IN
Max Moreno, MEM, PhD
mmorenom@iu.edu

Mississippi Valley State University†
Itta Bena, MS
Swatantra Kethireddy, PhD
swatantra.kethireddy@mvmsu.edu

Missouri Southern State University
Joplin, MO
Teresa Boman, PhD
boman-t@mssu.edu

Montana State University
Bozeman, MT
Seth Walk, PhD
seth.walk@montana.edu
Mari Eggers, PhD
mari.eggers@montana.edu

North Carolina Central University
Durham, NC
John Bang, MD, PhD
jbang@nccu.edu

Ohio University
Athens, OH
Michele Morrone, PhD
morrone@ohio.edu

Old Dominion University
Norfolk, VA
Sean Banae, PhD, CIH
sbanae@odu.edu

State University of New York, College of Environmental Science and Forestry
Syracuse, NY
Lee Newman, PhD
lanewman@esf.edu

Texas Southern University
Houston, TX
Zivar Youselfpour, PhD
zivar.youselfpour@tsu.edu

The University of Findlay†
Findlay, OH
Timothy Murphy, PhD
murphy@findlay.edu

University of Georgia, Athens
Athens, GA
Anne Marie Zimeri, PhD
zimeri@uga.edu

University of Illinois Springfield†
Springfield, IL
Egbe Egiebor, PhD
egie2@uis.edu

University of Washington
Seattle, WA
Tania Busch-Isaksen, MPH, PhD, REHS
tania@uw.edu

University of Wisconsin Eau Claire
Eau Claire, WI
Crispin Pierce, PhD
piercach@uwec.edu

University of Wisconsin Oshkosh
Oshkosh, WI
Sabrina Mueller-Spitz, DVM, PhD
muelleres@uwosh.edu

West Chester University
West Chester, PA
Lorenzo Cena, PhD
lcena@wcupa.edu

Western Carolina University
Cullowhee, NC
Kim Hall, PhD
kkhall@email.wcu.edu

Western Kentucky University†
Bowling Green, KY
Ritchie Taylor, PhD
ritchie.taylor@wku.edu

*University also has an accredited graduate program.
†Accredited graduate program only.