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SUPPLEMENTAL APPENDIX: IMPROVING THE RELIABILITY OF FOOD SAFETY DISCLOSURE: 

RESTAURANT GRADING IN SEATTLE AND KING COUNTY, WASHINGTON 

 

We here present supplemental results and figures to document our findings in support of the new 

grading system:  

 Sections A-C presents results on the association between critical violation points and 

foodborne illnesses. 

o Table 1 provides a contingency table between critical and non-critical violation 

points and probable or lab-confirmed foodborne outbreaks. 

o Figure 1 presents receiver operating characteristic curve from a logistic regression 

of predicting foodborne illness outbreaks, showing that while violations are 

statistically significant predictors, the marginal predictive power is relatively low.  

o Figure 2 visualizes the correlation between violation points and foodborne illness 

outbreaks.  

 Sections D-E demonstrate that reliability is much higher with critical violation points. 

o Figure 3 presents data from 378 peer review inspections showing that when two 

inspectors observed identical conditions, their agreement rate was much higher in 

the citation of critical than non-critical violations.  

o Figure 4 presents formal tests from logistic regressions of agreement for each 

violation across 378 peer review inspections, confirming that critical violations 

were statistically significantly more likely to result in agreement.  



 Section F provides methodological details and results of the matched sample analysis of 

repeat violations.  

o Table 2 presents effects from 2006-14, demonstrating that repeat violations do not 

systematically predict worse outcomes.  

 Section G presents results from the matched sample analysis of order effects.  

o Table 3 shows that the time trend, conditional on the average inspection score, 

does not systematically predict outcomes.  

 Section H displays results from the investigation into predictive power going back 

multiple rounds of inspections.  

o Figure 5 plots the magnitude and 95% confidence interval of regression 

coefficients, showing that there is a sharp break in marginal predictive power 

around 4-5 prior inspections.  

 Section I shows that area rotations do not substantially affect the average critical score of 

an inspector, meaning that inter-inspector differences dwarf area differences. 

o Figure 6 shows that inspector differences persist across area rotations.  These 

findings justify particular attention to account for inter-inspector variability rather 

than inter-area variability.   

 Section J provides a formal description of unadjusted and adjusted grading systems. 

 Section K describes the easy-to-use software we make available in the R language to 

implement adjusted grading.  

 Section L calculates the grade distribution for 60 establishments subject to full 

investigations with probable or confirmed instances of foodborne illness under both 

unadjusted and adjusted grading. 

  



A. Lab-Confirmed Foodborne Illness and Violations 

 

 

 Lab-Confirmed 

Foodborne Illness 

 

 Yes No Difference 

Critical point score 18.42 

(3.67) 

9.95 

(0.07) 

8.47** 

(3.67) 

Non-critical point score 6.40 

(1.09) 

2.98 

(0.02) 

3.42*** 

(1.09) 

N 57 51,757  

Table 1: Correlation between number of critical and non-critical violations and probable or lab-confirmed cases of foodborne illness 
based on full investigations.  Each cell presents the conditional mean with standard errors in parentheses below.  The “Difference” 
column indicates the difference in points between establishments with lab-confirmed foodborne illnesses and those without.  **/*** 
indicate statistical significance at 0.05 and 0.01-levels, respectively, using a difference-in-means t-test. 

  



B. Predictive Power of Critical Score 

 

Figure 1: Receiver operating characteristic (ROC) curve of logistic regression model predicting probable or lab-confirmed 
foodborne illness outbreaks.  The solid line represents the ROC curve for a model with critical points as the explanatory variable.  
The dashed line represents the ROC curve for a model with total points (the sum of critical and non-critical points) as the 
explanatory variable.  While both predictors are statistically significant (p-value < 0.01), the substantive predictive power is low.  
For instance, sensitivity (the true positive rate) at 50% has a specificity (true negative rate) of only 61-67%.  
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C. Predicted Probability of Investigation 

 

Figure 2: Correlation between critical violation points and probable or lab-confirmed cases of foodborne illness based on full 
investigations.  The bottom panel plots the histogram of critical violation points of all establishments. The top panel plots the 
critical violation points in the routine inspection immediately preceding the case of foodborne illness.  The middle panel plots the 
model-based association, using a logistic regression with foodborne illness as the outcome and critical violation points as the 
explanatory variable.  The curve plots the predicted probability, with 95% confidence intervals.  The coefficient is statistically 
significant (p-value < 0.001), but because the baseline rate of foodborne illnesses traced back to an establishment is so low, the 
substantive predictive power is low.   
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D. Reliability of Critical vs. Non-Critical Violations 

 

 

Figure 3: Results from 378 peer review inspections.  The x-axis plots the baseline rate at which each violation was cited and the y-
axis plots the rate at which two inspectors observing the same conditions deviated on whether or not to cite the violation.  Red 
(blue) corresponds to critical (non-critical) violations, and the bands present correlation from a simple linear fit separate to critical 
and non-critical violations, with 95% confidence intervals.  Critical violations exhibit much lower deviation rates, so that basing a 
grade on critical violations has a better public health rationale and improves reliability of grades. 
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E. Regression Tests of Critical Violation Reliability 

 

 Model 1 Model 2 Model 3 

Critical violation 0.43*** 

(0.08) 

0.59*** 

(0.08) 

0.65*** 

(0.08) 

Baseline citation rate  -7.83*** 

(0.43) 

-8.64*** 

(0.46) 

Business FE No No Yes 

No. businesses 378 378 378 

No. violations  19,656 19,656 19,565 

AIC 5912 5613 5275 

Figure 4: Logistic regression estimates of whether critical violations are more reliably inspected, based on 378 peer review 
inspections.  Each observation represents one of 52 violations during 378 peer review inspections, with a binary outcome of whether 
two inspectors observing the same conditions agreed on citation of the violation.  Coefficients are presented with standard errors 
in parentheses. *** indicates statistical significance at the 0.01-level. In each model, critical violations exhibit statistically 
significantly higher rates of agreement.  Business FE indicates business fixed effects and AIC indicates the Akaike Information 
Criterion.  

  



F. Matched Samples Analysis of Repeat Violations 

 

Methods 

We analyzed inspection data for King County businesses with “risk level 3” permits (highest risk 

category) with at least one inspection score in the year of interest (specified in the “Year” 

column in Error! Reference source not found.), and with at least two subsequent inspections 

(between January 1 in the year of interest and July 2016).  We matched businesses with the same 

inspection scores in the first and second rounds of inspections (with each unique set of first and 

second round scores corresponding to one stratum), and identified, as members of a treatment 

group, those businesses in each stratum that were cited for the same violation in the first and 

second inspections. 

 

Denote the total number of treatment businesses in year 𝑇 by 𝑁ଵ (omit 𝑇 indices on all variables 

to simplify notation, although each variable is also dependent on year), the number in stratum 𝑗 

by 𝑁ଵ௝, the number of control businesses in stratum 𝑗 by 𝑁଴௝, and the estimators for the mean 

third round inspection scores in stratum 𝑗 by 𝑌തଵ௝ and 𝑌ത଴௝, for the treatment and control groups 

respectively.  As described in Imbens and Rubin,1 we calculate estimators for the mean 

inspection scores in the third round of inspections, 𝑌തଵ and 𝑌ത଴, for the treatment and control 

groups, as follows: 
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(1) 

where  𝑌ଵ௝௞ is the observed third round inspection score for the 𝑘th business in the treatment 

group of stratum 𝑗, and similarly 𝑌଴௝௞ is the third round inspection score for the 𝑘th business in 

the control group of stratum 𝑗.  𝑌തଵ and 𝑌ത଴ are recorded in Error! Reference source not found. 

for years 𝑇 between 2006 and 2014.  The average treatment effect on the treated is reported in 

Error! Reference source not found.: 



 
𝜏̂ ൌ 𝑌തଵ െ  𝑌ത଴ ൌ  ෍൬
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 , 
(2) 

where 𝜏̂௝ ൌ  𝑌തଵ௝ െ 𝑌ത଴௝, and is the treatment effect within each stratum.   

 

To test the null hypothesis that the average treatment effect, 𝜏̂, is zero, we calculate the 

generalized Neyman sampling variance for each stratum1:   
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, 

and we calculate the sampling variance of  𝜏̂ by summing the within-stratum variances when 

each is weighted by the square of the proportion of treatment businesses within the stratum: 

 
𝕍෡ሺ𝜏̂ሻ ൌ෍൬

𝑁ଵ௝
𝑁ଵ

൰
ଶ
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 . 
(3) 

We weight each stratum’s contribution to the variance (as well as the treatment effect, and mean 

inspection scores) by the proportion of treatment restaurants.  

 

Finally, the resulting t-statistic we use is1:  

 
𝑡 ൌ  

𝜏̂

ඥ𝕍෡ሺ𝜏̂ሻ
 . 

(4) 

 

Results 

Table 1 presents results for matched sample analyses from 2006-2014.  Results are quite mixed 

for the period from 2006-2012, where the 2008 data might even suggest that repeat violators 

perform better than the control group.  In 2013 and 2014, there is some evidence that repeat 

violators perform worse.  We interviewed county officials to understand why such a difference 

might exist.  The major difference is that around 2013, the county adopted an electronic tablet 

system, as well as an online dashboard, which facilitated looking up violation history, making 

the presence of repeat violations more salient.  It is highly plausible that such salience might 

affect inspection conduct in the third inspection: if inspectors believed repeat violators to be “bad 

apples,” they may cite more violations in the third inspection, even conditional on the same risk 

factors present.  As a result, we believe that the 2006-12 period provides a cleaner test of the 



repeat violation hypothesis.  In any case, because the results are mixed, it does not provide a 

strong evidence base for using repeat violations as an input to the grading system.  

 

 Treated Control Avg. treatment 

effect 
Year Avg. score N1 Avg. score N0 

2006 13.03 743 13.59 1439 -0.55 

2007 13.36 758 12.62 910 0.75 

2008 13.06 575 14.68 1131 -1.62* 

2009 13.52 730 12.30 873 1.22 

2010 12.71 770 12.20 967 0.52 

2011 13.29 691 14.40 872 -1.11 

2012 14.33 705 14.17 974 0.16 

2013 17.30 688 15.05 910 2.25** 

2014 19.21 851 17.12 954 2.10** 

Table 2: Treatment effects from separate matched sample analyses of repeat violations form 2006-14. The first two columns present 
(weighted) average scores and sample sizes for the matched treated units and the next two columns present (weighted) average 
scores and sample sizes for the matched control units. The last column indicates the estimate of the average treatment effect on the 
treated. */** indicate statistical significance at the 0.1 and 0.05 levels, respectively.   



G. Matched Samples Analysis of Order Effects 

 

Year No. 

businesses, 

Treatment 

No. 

businesses, 

Control 

Score,  

Treatment 

Score,  

Control 

Score 

Difference 

(Treatment – 

Control) 

2006 1818 1884 11.19 11.40 -0.21 

2007 1949 1863 11.53 10.81 0.72 

2008 1886 1892 10.42 10.55 -0.13 

2009 1947 1803 11.49 10.05 1.44*** 

2010 1730 2072 9.89 8.98 0.91** 

2011 1789 1832 10.49 10.07 0.42 

2012 1938 1854 11.04 10.55 0.48 

2013 1890 1800 13.76 13.19 0.57 

2014 1769 1934 14.38 14.07 0.31 

Table 3: Matched Samples and Inspection Score Trends. We analyzed inspection data for level 3 permit businesses with at least 
one inspection score in the year of interest (specified in the “Year” column above), and with at least two subsequent inspections 
(between January 1 in the year of interest and July 2016). We matched businesses with the same inspection scores in the first and 
second rounds of inspections, and sorted businesses into treatment and control groups based on whether scores across the first and 
second rounds were increasing (treatment) or decreasing (control). We then calculated the mean inspection score in the third round 
of inspections for both treatment and control groups, as in Equation (1) of Section F, as well as the treatment effect as in Equation 
(2). Finally, we calculated the variance for the score difference in order to test the null hypothesis, as in Equations (3) and (4) of 
Section F.  **/*** indicate statistical significance at the 0.05 and 0.01 level, respectively. Inspection score trend is generally not a 
good predictor of future performance. 

 

  

 



H. Analysis of Time Periods  

 

Figure 5: Analysis of historical predictive power.  The figure presents the marginal coefficient estimates from least squares models 
regressing the most recent inspection score on prior inspection scores.  Each model sequentially adds an additional round of 
inspections, and the dots represent the coefficient point estimate with 95% confidence interval in vertical lines, weighted by the 
number of establishments with the requisite number of inspections.  We can see that the marginal predictive power decreases, and 
levels off sharply around 4-5 routine inspections.  
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I. Persistence of Inspector Differences across Different Areas 

 

 

Figure 6: Correlation of inspector average critical score before an area rotation (2012-13) and after area rotation (2014-15).  Each 
dot represents one inspector, weighted by the average number of inspections conducted across both periods to account for sampling 
variability. The line indicates prediction from a least squares fit, with 95% confidence interval.  This figure demonstrates that 
differences in food safety quality across areas are dwarfed by inter-inspector differences.  Regardless of the rotation, inspectors 
center their scores around the pre-rotation mean.  
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J. Formal Description of Grading Systems 

 

Let us encode restaurant information within matrix 𝑿 and vector 𝒛, with matrix 𝑿 being of 

dimensions 𝑛 ൈ  4 and vector 𝒛 being of length 𝑛, where 𝑛 is the number of restaurants to be 

graded (in our case, the number of high risk restaurants in King County).  Entry 𝑿௜௝ is the 

inspection score for restaurant 𝑖 in the 𝑗th most recent inspection, while 𝒛௜ is the ZIP code for 

restaurant 𝑖 (although in principle, 𝒛௜ could represent any unit of aggregation that is meaningful 

within the grading system, e.g., inspector assignment areas, census tracts, municipalities, or 

district offices).   For example, imagine that restaurant A in ZIP code 10001 scored 5, 5, 1 and 2 

points in its most recent, second most recent, third most recent and fourth most recent 

inspections respectively; and that restaurant B in ZIP code 10002 scored 3, 4, 5, and 10 points in 

its most recent, second most recent, third most recent and fourth most recent inspections 

respectively (these are artificial scores and should not be associated with real restaurants in these 

ZIP codes).  Then matrix 𝑿 would read: 

𝑿 ൌ  ൥
5 5 1 2
3 4 5 10
⋮ ⋮ ⋮ ⋮

൩,  

and vector 𝒛: 

𝒛 ൌ  ൥
10001
10002
⋮

൩. 

 

Let us also store grade cutoff scores in vector 𝜞, in which 𝜞ଵ is the A/B cutoff score and 𝜞ଶ is 

the B/C cutoff score.  An example set of cutoffs could be: 

𝜞 ൌ ቀ10
20
ቁ.  

 

In conventional restaurant grading systems (unadjusted grading), if we let 𝑔ሺ𝑿௜ଵ,𝜞ሻ represent the 

grade awarded to restaurant 𝑖, then the grades for restaurants A and B are calculated according to 

the following rule: 

 
𝑔ሺ𝑿௜ଵ,𝜞ሻ ൌ ൝

𝐴,                   𝑿௜ଵ ൑ 𝜞ଵ
𝐵,         𝜞ଵ ൏ 𝑿௜ଵ ൑ 𝜞ଶ
𝐶,                   𝑿௜ଵ ൐ 𝜞ଶ

. 
 

(1) 



From Equation (1), unadjusted grading only uses the most recent inspection score for grade 

assignment and grade cutoff vectors are independent of ZIP code. (Restaurants A and B would 

both receive ‘A’ grades in this scheme, since 5 and 3 are both less than or equal to 13). 

 

Quantile Adjustment (with “Ties Resolution”) 

In our proposed grading system (adjusted grading), we replace 𝑿௜ଵ with 𝒙ഥ௜ in (1), where 𝒙௜ is the 

𝑖th row vector in matrix 𝑿 and  𝒙ഥ௜ is the mean inspection score for restaurant 𝑖 over its four most 

recent inspections (or fewer if it has not yet been subject to as many).  Furthermore, 𝜞 is no 

longer independent of ZIP code.  In particular, let 𝜸 be a vector of percentiles of length 2 with 

𝜸ଵ ൏ 𝜸ଶ.  Let 𝒖ሺ𝒛௜ሻ be the vector of unique mean (critical) inspection scores for ZIP code 𝒛௜ of 

length 𝑛௭೔, and without loss of generality, let us assume that scores are ordered from smallest to 

largest.  Let vector 𝒘ሺ𝒖ሺ𝒛௜ሻሻ contain the weights associated with each mean score in ZIP code 

𝒛௜, i.e., let 𝒘௝ሺ𝒖ሺ𝒛௜ሻሻ, the 𝑗th element of 𝒘ሺ𝒖ሺ𝒛௜ሻሻ, be the proportion of restaurants in ZIP code 

𝒛௜ with score 𝒖௝ሺ𝒛௜ሻ. Then the grade cutoffs for ZIP code 𝒛௜ in our adjusted grading system are: 

 
𝜞ሺ𝒛௜ ,𝜸ሻ ൌ  ቆ

𝒖௙ሺଵሻሺ𝒛௜ሻ
𝒖௙ሺଶሻሺ𝒛௜ሻ

ቇ, 
 

(2) 

where 
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(3) 

In words, 𝑓ሺ1ሻ is the index that minimizes the absolute difference between desired proportion 𝜸ଵ 

for an “A” grade and the proportion of restaurants in 𝒛௜ with scores less than or equal to 

𝒖௙ሺଵሻሺ𝒛௜ሻ.  𝑓ሺ2ሻ returns the index that minimizes the absolute difference between desired 

proportion ሺ𝜸ଶ െ 𝜸ଵሻ for a “B” grade and the proportion of restaurants in 𝒛௜ with scores between 

𝒖௙ሺଵሻሺ𝒛௜ሻ and 𝒖௙ሺଶሻሺ𝒛௜ሻ. 

 

The grade awarded to restaurant 𝑖 is then: 



 
𝑔൫𝒙ഥ𝒊,𝜞ሺ𝒛௜ ,𝜸ሻ൯ ൌ ቐ

𝐴,                               𝒙ഥ𝒊 ൑ 𝜞ଵሺ𝒛௜ ,𝜸ሻ
𝐵,        𝜞ଵሺ𝒛௜ ,𝜸ሻ ൏  𝒙ഥ𝒊 ൑ 𝜞ଶሺ𝒛௜ ,𝜸ሻ
𝐶,                               𝒙ഥ𝒊 ൐ 𝜞ଶሺ𝒛௜ ,𝜸ሻ

. 

 

 

(4) 

The vector of percentiles, 𝜸, is independent of ZIP code: the core idea of our adjusted grading 

scheme is to differentiate as close to the top 𝜸ଵ% of restaurants in ZIP code 𝒛௜ from the middle 

ሺ𝜸ଶ െ 𝜸ଵሻ % and the bottom ሺ𝟏 െ ሺ𝜸ଶ ൅ 𝜸ଵሻሻ%, which cannot be done with unadjusted grading 

due to inspector differences.  The specific 𝜸 values are chosen so that overall proportions of 

A/B/C grades across the entire county are the same (or within a certain tolerance) as those for 

unadjusted grading (at the time of grading), when the cutoff scores for unadjusted grading are 

selected to be meaningful values within the county’s inspection system (e.g., a closure 

threshold).  

 

Quantile Adjustment – Alternative Implementation (“Percentile Method”) 

In our software package, we provide an alternative mapping between percentiles 𝜸 and ZIP code 

cutoffs, 𝜞ሺ𝒛௜ ,𝜸ሻ, to the one outlined in equations (2) and (3).  In particular, let 𝜸 continue to 

represent a vector of percentiles of length 2 with 𝜸ଵ ൏ 𝜸ଶ; but now let ℳሺ𝒛௜ሻ represent the set of 

all mean inspection scores for ZIP code 𝒛௜, ordered from smallest to largest (ℳሺ𝒛௜ሻ is different 

to 𝒖ሺ𝒛௜ሻ, which is the vector of all unique mean scores in ZIP code 𝒛௜ ).  Let 𝑁௭೔ be the number 

of restaurants to be graded in ZIP code 𝒛௜.  Then the grade cutoffs for ZIP code  𝒛௜ in our 

adjusted grading system are: 

 
𝜞ሺ𝒛௜ ,𝜸ሻ ൌ  ቆ

ඃ𝜸ଵ  ൈ  ሺ𝑁௭೔ሻඇth element of ℳሺ𝒛௜ሻ

ඃ𝜸ଶ  ൈ  ሺ𝑁௭೔ሻඇth element of ℳሺ𝒛௜ሻ
ቇ, 

 

 

(5) 

where ⌈… ⌉ represents the ceiling function.  The grade awarded to restaurant 𝑖 is then calculated 

using equation (4). 

 

A motivation for adopting the first “Ties Resolution” method over the second, arguably simpler, 

“Percentile” method is illustrated in Figure 7. In particular, we display part of the cumulative 

distribution function for the Tukwila ZIP code when it was inspected by a lenient inspector in the 

pre-rotation period.  Tukwila has a total of 176 restaurants to be graded, and 27 of these 



businesses have a mean inspection score, 𝒙ഥ௜, of 2.5.  The problem with the percentile method is 

demonstrated if the desired proportion of restaurants to gain ‘A’ grades, 𝜸ଵ, falls between 0.52 

and 0.595. In this instance, the returned A/B cutoff for Tukwila, 𝜞ሺTukwila,𝜸𝟏ሻ, calculated by 

the percentile method, is 2.5; and 67% of restaurants in Tukwila gain an ‘A’ grade. This is 

despite the fact that choosing 1.25 as the A/B cutoff results in 52% of restaurants scoring ‘A’s, 

which is closer to the percentage of restaurants gaining ‘A’ grades in other ZIP codes (most other 

ZIP codes do not have such large ties problems, so have proportions closer to the desired 0.52 ൏

𝜸ଵ ൏ 0.595 ).  If 𝜸ଶ ൌ 0.9, 23% of restaurants in Tukwila gain a “B” grade with the percentile 

method (the ties problem is not an issue for the upper end of the Tukwila score distribution), 

while this is closer to, depending on the choice of 𝜸ଵ, 31% - 38% of restaurants in other ZIP 

codes. With such a large difference in the proportion of ‘B’ grades between Tukwila and other 

ZIP codes, the B/C cutoff in Tukwila seems an arbitrary choice.  In comparison, the “Ties 

Resolution” method, for the same 𝜸ଵ, returns 1.25 as 𝜞ሺTukwila,𝜸𝟏ሻ, and selects the B/C cutoff 

so that as close as is possible to ሺ0.9 െ 𝜸ଵሻ% of restaurants gain “B” grades.  In order to 

minimize geographic differences in the presence of ties in ZIP code score distributions, we prefer 

quantile adjustment with ties resolution.  This is the default method applied inside the 

‘�������	��
’ function of our software package.  

 

Additional Implementation Details for the Quantile Grading System 

While the majority of establishments are graded according to the protocol described above, there 

are some edge cases that we discuss here. Firstly, in the case that a ZIP code has fewer than 10 

establishments, we aggregate inspection scores for establishments in neighboring ZIP codes 

before calculating cutoffs. This ensures that cutoffs (and, thus, grades) are less likely to 

dramatically change as a result of a single inspection for a single establishment. 

 

Secondly, while the analyses presented in text focus on the riskiest establishments (“level 3” 

permit holders), Seattle-King County rolled out grading on all food establishments within the 

county, with the exception of food trucks and grocery stores. Cutoffs are calculated separately 

for level 3 establishments compared to for level 1 and 2 establishments to compare businesses of 

a similar food complexity to one another (establishments in levels 1 and 2 compared to other 

establishments in levels 1 and 2, and establishments in level 3 compared to other establishments 



in level 3. This is valuable because the levels, and food complexity that they represent, result in 

some violation types being applicable to level 3 establishments that would not be for levels 1 and 

2. This then enables greater differentiation of performance between business that are like one 

another.  Because of the relatively small number of level 1 and level 2 establishments, cutoffs 

were calculated by pooling the two levels together. 

 

 

Figure 7: Illustration of the “Tukwila Ties Problem” and both methods of Quantile Adjustment (Quantile Adjustment with Ties 
Resolution, and the Percentile Method). We plot the empirical cumulative distribution function for mean inspection scores, 𝒙ഥ௜, in 
the Tukwila ZIP code. If the desired global proportion of restaurants to gain an ‘A’ grade is 0.52 ൏ 𝜸ଵ ൏ 0.595, the percentile 
method returns  𝜞ሺTukwila,𝜸𝟏ሻ = 2.5, which results in 67% of restaurants gaining ‘A’ grades. In comparison, 𝜞ሺTukwila,𝜸𝟏ሻ = 
1.25 for the ‘Resolve Ties’ method and 52% of restaurants gain an ‘A’ grade. The ‘Resolve Ties’ method is better at reducing 
geographic differences in grade proportions than the percentile method, and correspondingly is the default method within our 
software. 
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K. Software  

 

To easily implement the grading system in any jurisdiction, we have designed an open source 

statistical software package called “QuantileGradeR” written in the R language.2 The package is 

available at https://cran.r-project.org/web/packages/QuantileGradeR/index.html. This package 

enables the calculation of 𝜞ሺ𝒛௜ ,𝜸ሻ, the vector of grade cutoffs, for each ZIP code 𝒛௜, as well as 

adjusted grades, 𝑔ሺ𝒙ഥ𝒊,𝜞ሺ𝒛୧,𝜸ሻሻ, and unadjusted grades,  𝑔ሺ𝑿௜ଵ,𝜞ሻ.  To integrate easily with 

King County’s EnvisionConnect system, we anticipate that the package will be used to calculate 

grade cutoffs for ZIP codes, with the table imported into the database. However, QuantileGradeR 

is a standalone package that can be used to grade restaurants entirely on its own: as input, all that 

is required is matrix 𝑿, vector 𝒛 and the vector of natural grade cutoff values for the inspection 

system, 𝜞. 

 

The central functions contained in the package are ‘�������	��
’ and ‘��
�������
’. Within the 

package we also provide two anonymized King County data samples: ‘����’ is a toy matrix 𝑿 

and ‘���
���’ is a toy vector 𝒛. To call the central functions and perform adjusted grading on the 

example datasets is easy. The user first locates grade cutoffs in each ZIP code: 

 

zip.cutoffs <- findCutoffs(X.kc, zips.kc, c(0, 30)), 

 

and grades are then calculated using the cutoff scores, 

 

  grades <- gradeAllBus(rowMeans(X.kc, na.rm = TRUE), 

                         zips.kc, zip.cutoffs). 

 

QuantileGradeR is a versatile package: the number of grade classifications is not limited to three 

(simply increasing or decreasing the number of inspection system relevant values within the 𝜞 

vector will alter the number of grade classifications); and both methods of quantile adjustment 

(the ‘Resolve Ties’ and ‘Percentile’ methods outlined in Appendix J) can be readily implemented 

(‘Resolve Ties’ is the default option, but the Percentile method is invoked by setting ‘��
	�������
’ 

to ����� when calling ‘�������	��
’).  Furthermore, our package is not limited to grading 

restaurants, nor to performing the percentile adjustment on the ZIP code level – the only 



requirement for 𝑿 is that it is an 𝑛 ൈ  𝑝 numerical matrix, where 𝑛 is the number of entities to be 

graded and 𝑝 is the number of scores that should be averaged to calculate 𝒙ഥ𝒊 in the adjusted 

system.  Similarly, 𝒛 need only be a character vector of length 𝑛. Although we have designed the 

package with King County in mind, the package can also be readily used in jurisdictions where 

higher scores correspond to reduced risk: inspection scores should be transformed before 

‘�������	��
’ or ‘��
�������
’ are called with a simple transformation function like 𝑓ሺ𝑠𝑐𝑜𝑟𝑒ሻ ൌ

 െ𝑠𝑐𝑜𝑟𝑒. The resulting cutoff values can be transformed back, if desired, using (in this case) the 

same transformation function.   

  



L. Grades and Foodborne Illness 

 

 A B C 
Unadjusted  24 24 12 

Adjusted 22 25 13 

Table 4: Incidence of probable or confirmed foodborne illness from 2012-May 2016 across establishments by grading system.  
Each row indicates the distribution of grades existing at the time of the illness under the unadjusted or adjusted grading system.  
The adjustment moves two establishments from the ‘A’ to the ‘B’ category, and one from the ‘B’ to the ‘C’ category.   
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